Flag Organic Chemistry> Nitro Group Question...
question mark

Why does nitro group show -I effect having one unpaired electron?

Sunny Sarvottam , 14 Years ago
Grade
anser 1 Answers
Anurag Kishore

Last Activity: 14 Years ago

Hi

 

In organic chemistry, a deactivating group (or electron withdrawing group) is a functional group attached to a benzene molecule that removes electron density from the benzene ring, making electrophilic aromatic substitution reactions slower and more complex relative to benzene. Depending on their relative strengths, deactivating groups also determine the positions (relative to themselves) on the benzene ring where substitutions must take place; this property is therefore important in processes of organic synthesis

 

Categories

Deactivating groups are generally sorted into three categories. Weakly deactivating groups direct electrophiles to attack the benzene molecule at the ortho- and para- positions, while strongly and moderately deactivating groups direct attacks to the meta- position. This is not a case of favouring the meta- position like para- and ortho- directing functional groups, but rather disfavouring the para- and ortho- positions more than they disfavour the meta- position                              

 Strongly Deactivating Groups

-NO2, nitro groups

-NR3+ Quaternary amine /Quaternary ammonium base

-CF3, CCl3 trihalides

 Moderately Deactivating Groups

-CN cyano groups

-SO3H sulfonates

-CO2H, -CO2R carboxylic acids

-CHO, -COR Aldehydes and Ketones

Halides are otho- para- directing groups (activating) due to the lone pair activating the benzene ring. F directs strongly to the para position (86%) while I directs to otho and para (45% and 54% respectively).

 Mechanism

While steric effects are a consideration, the major contribution of deactivating groups is achieved by utilizing the nature of conjugated systems (specifically the ease through which mesomeric effects travel through such systems) to create regions of positive charge within the resonance contributors. Take for example a benzene with a nitro group substituent, the mechanistic explanation of the resulting deactivation is best explained diagrammatically:

 
Enlarge
Mechanistic approach using the curved arrow formalism

The resulting resonance hybrid, now possessing δ+ charges in the ortho- and para- positions repels approaching electrophiles increasing the relative success of attack in the meta position.

The selectivities observed with activating groups and deactivating groups were first described in 1892 and have been known as the Crum Brown-Gibson Rule.

 

 

Thanks

Anurag Kishore

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...