Flag Algebra> progression and series...
question mark

if a,b,c are in g.p. , then the equation ax2 + bx + c = 0 & dx2+2ex+f=0 have a common root if d/a, e/b, f/c are in(a) A.P.(b)G.P.(c)H.P.(d)NONE OF THESE

raman malik , 14 Years ago
Grade 12
anser 2 Answers
SHAIK AASIF AHAMED

Last Activity: 10 Years ago

Hello student,
Please find the answer to your question below
a, b, c are in GP
⇒b2=ac ------------(1)
Now,ax2+2bx+c=0
⇒x=−2b±sqrt(4b2−4ac)/2a
⇒x=(−b±0)/a[Using(1)]
⇒x=−b/a
Also,dx2+2ex+f=0
⇒x=−2e±sqrt(4e2−4df)/2d
⇒x=−e+sqrt(e2−df)/d
Now, since the 2 equations have 1 common root, thus:-
−b/a=−e+sqrt(e2−df)/d,
⇒d/a=(e/b)−sqrt(e2−df)/b,
⇒d/a=e/b−sqrt((e2−df)/b2)
⇒(e2−df)/b2=(e/b−d/a)2,
⇒e2/b2−df/ac=(e/b−d/a)2, [Using(1)]
⇒(e/b)2−(d/a)(f/c)=(e/b)2−2(e/b)(d/a)+(d/a)2,
⇒−(da)(fc)=−2(e/b)(d/a)+(d/a)2,
⇒f/c+d/a=2(e/b),
⇒d/a,e/b,f/careinAP
Hence a is the correct answer

Kushagra Madhukar

Last Activity: 4 Years ago

Dear student,
Please find the attached solution to your question

a, b, c are in GP
⇒ b2 = ac ------------(1)
Now, ax2+2bx+c=0
⇒x=−2b±sqrt(4b2−4ac)/2a
⇒x=(−b±0)/a [Using(1)]
⇒x=−b/a
Also,dx2+2ex+f=0
⇒x=−2e±sqrt(4e2−4df)/2d
⇒x=−e+sqrt(e2−df)/d
Now, since the 2 equations have 1 common root, thus:-
−b/a=−e+sqrt(e2−df)/d,
⇒d/a=(e/b)−sqrt(e2−df)/b,
⇒d/a=e/b−sqrt((e2−df)/b2)
⇒(e2−df)/b2=(e/b−d/a)2,
⇒e2/b2−df/ac=(e/b−d/a)2, [Using(1)]
⇒(e/b)2−(d/a)(f/c)=(e/b)2−2(e/b)(d/a)+(d/a)2,
⇒−(da)(fc)=−2(e/b)(d/a)+(d/a)2,
⇒f/c+d/a=2(e/b),
⇒d/a,e/b,f/c are in AP.
Hence a is the correct answer

Hope it helps.
Thanks and regards,
Kushagra

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...