Flag Algebra> If in a triangle ABC, cos A cos B + sin A...
question mark

If in a triangle ABC, cos A cos B + sin A sin B sin C = 1, Show that a : b : c = 1 : 1 : √2

Hrishant Goswami , 10 Years ago
Grade 10
anser 1 Answers
Jitender Pal

Last Activity: 10 Years ago

Hello Student,
Please find the answer to your question
We are given that in ∆ ABC cos A cos B + sin A sin B sin C = 1
⇒ sin A sin B sin C = 1 – cos A cos B
⇒ sin C = 1 – cos A cos B/sin A sin B
⇒ 1 – cos A cos B/sin A sin B ≤ 1 [∵ sin C ≤ 1]
⇒ 1 – cos A cos B ≤ sin A sin B
⇒ 1 ≤ cos A cos B + sin A sin B
⇒ 1 ≤ cos(A – B)
⇒ 1 ≤ cos(A – B)
But we know cos (A – B) ≤1
∴ We must have cos (A – B) = 1
⇒ A – B = 0
⇒ A = B
∴ cos A cos A + sin A sin A sin C = 1 [For A = B]
⇒ cos2 A + sin2 A sin C = 1
⇒ sin2 A sin C = 1 – cos2 A
⇒ sin2 A sin C = sin2 A
⇒ sin2 A (sin C – 1) = 0
⇒ sin A = 0 or sin C = 1
The only possibility is sin C = 1 ⇒ C = π/2
∴ A + B = π/2
But A = B ⇒ A = B = π/4
∴ By Sine law in ∆ ABC,
a/sin A = b/sin B = c/sin C
⇒ a/sin 45° = b/sin 45° = c/sin 90°
⇒ a/1/√2 = b/1/√2 = c/1
⇒ a/1 = b/1 = 1/√2 ⇒ a : b : c = 1 : 1 : √2
Hence proved the result.

Thanks
Jitender Pal
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...