Flag Algebra> Please explain the concept of finding th...
question mark

Please explain the concept of finding the sum of an infinite Geometric Progression.

image profile
Prajwal S , 9 Years ago
Grade 11
anser 1 Answer
profile image
Latika Leekha

Last Activity: 9 Years ago

Hello student,
First of all a geometric progression or a geometric series is a series of terms in which the ratio of any two adjacent terms is constant.
Eg. 2,,4 8, ….. is a geometric progression where the common ratio i.e. r = 2.
Now we discuss how to find the sum of infinite Geometric Progression:
Firstly, the sum of n terms of a G.P. is given by
S = a1-rn/1-r, where r ≠ 1.
Now, if |r| < 1 and n → ∞ then rn → 0 and in this case geometric series will be summable upto infinity and its sum is given by S= a/1-r.
I’ll consider one example here based on this concept:

Eg: The sum of an infinite number of terms of a G.P. is 15 and the sum of their squaresis 45. Find the series.
Sol: We have a + ar + ar2 + ar3 + ....... = 15
so, a/1-r = 15.
a2 + ar2 + ar22 +.... = 45


242-255_forum 4th june.png
1-r/1+r = 1/5
Solving this we get 5-5r = 1+r.
So r = 2/3.
so, a = 151-r = 151-2/3 = 5.
so the series is 5, 10/3, 20/9, ….. .

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...