Harsh Tiwari
Last Activity: 3 Years ago
P(n): n(n + 1) (n + 2) is divisible by 6.
P(1): 1 (2) (3) = 6 is divisible by 6
∴ P(1) is true.
Let us assume that P(k) is true for n = k
That is, k (k + 1) (k + 2) = 6m for some m
To prove P(k + 1) is true i.e. to prove (k + 1) (k + 2) (k + 3) is divisible by 6.
P(k + 1) = (k + 1) (k + 2) (k + 3)
= (k + 1)(k + 2)k + 3(k + 1)(k + 2)
= 6m + 3(k + 1)(k + 2)
In the second term either k + 1 or k + 2 will be even, whatever be the value of k.
Hence second term is also divisible by 6.
∴ P (k + 1) is also true whenever P(k) is true.
By Mathematical Induction P (n) is true for all values of n.