Flag Analytical Geometry> interpolation...
question mark

how to find if we should do the sum with newton's interpolation forward or by using backward formula by seeing the sum.

anitha ashok , 13 Years ago
Grade Upto college level
anser 1 Answers
SAGAR SINGH - IIT DELHI

Last Activity: 13 Years ago

Newton's Interpolation Formulae

As stated earlier, interpolation is the process of approximating a given function, whose values are known at $ N+1$ tabular points, by a suitable polynomial, $ P_N(x),$ of degree $ N$ which takes the values $ y_i$ at $ x=x_i$ for $ i=0,1,\ldots,N.$ Note that if the given data has errors, it will also be reflected in the polynomial so obtained.

In the following, we shall use forward and backward differences to obtain polynomial function approximating $ y = f(x),$ when the tabular points $ x_i$ 's are equally spaced. Let

 

$\displaystyle f(x) \approx P_N(x),$

 

where the polynomial $ P_N(x)$ is given in the following form:

$\displaystyle P_N(x)$ $\displaystyle =$ $\displaystyle a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+ \cdots+ a_k(x-x_0)(x-x_1)\cdots(x-x_{k-1})$  
    $\displaystyle +a_N (x-x_0)(x-x_1)\cdots(x-x_{N-1}).$ (11.4.1)


for some constants $ a_0,a_1,...a_N,$ to be determined using the fact that $ P_N(x_i) = y_i$ for $ i=0,1,\ldots,N.$

So, for $ i=0,$ substitute $ x = x_0$ in (11.4.1) to get $ P_N(x_0)=y_0.$ This gives us $ a_0=y_0.$ Next,

 

$\displaystyle P_N(x_1)=y_1 \Rightarrow y_1=a_0+(x_1-x_0)a_1.$

 

So, $ a_1=\frac{y_1-y_0}{h}=\displaystyle\frac{\Delta y_0}{h}.$ For $ i=2,$ $ \;\; y_2=a_0+(x_2-x_0)a_1+(x_2-x_1)(x_2-x_0)a_2,$ or equivalently

 

$\displaystyle 2h^2a_2= y_2 - y_0 - 2h(\frac{\Delta y_0}{h})=y_2-2y_1+y_0 = \Delta^2 y_0.$

 

Thus, $ a_2=\displaystyle\frac{\Delta ^2 y_0}{2h^2}.$ Now, using mathematical induction, we get

 

$\displaystyle a_k=\frac{\Delta ^k y_0}{k! \, h^k}\; {\mbox{ for }} \; k = 0, 1, 2, \ldots, N.$

 

Thus,

$\displaystyle P_N(x)$ $\displaystyle =$ $\displaystyle y_0+\frac{\Delta y_0}{h}(x-x_0)+\frac{\Delta ^2 y_0}{2! \,h^2}(x-x_0)(x-x_1) + \cdots + \frac{\Delta ^k y_0}{k! \, h^k} (x-x_0)\cdots(x-x_{k-1})$  
    $\displaystyle +\frac{\Delta ^N y_0}{N! \, h^N}(x-x_0)...(x-x_{N-1}).$

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...