Flag Analytical Geometry> The equation of circle passing through (4...
question mark

The equation of circle passing through (4,5) and having centre (2,2)

Priya , 7 Years ago
Grade 11
anser 1 Answers
Arun

Last Activity: 7 Years ago

1. (4, 5) lies on the circle. Use the distance formula to find the distance from the center, (2, 2) to (4, 5). That would be the radius. 

d = √[ (x₂ - x₁)² + (y₂ - y₁)² ] 
r  = √[ (4 - 2)² + (5 - 2)² ] 
r  = √13 

The equation of a circle in standard form is 
(x - a)² + (y - b)² = r²          center = (a, b) 

(x - 2)² + (y - 2)² = (√13)² 
(x - 2)² + (y - 2)² = 13 

2. You need to find the equation of a circle with the same center as x² + y² - 4x - 6y + 9 = 0. 

x² + y² - 4x - 6y + 9 = 0 
(x² - 4x) + (y² - 6y) = -9 

To complete the square, take half of 4 and half of 6, then square it and add it to both sides. 
(4/2)² = 4 
(6/2)² = 9 

(x² - 4x + 4) + (y² - 6y + 9) = -9 + 4 + 9 
(x - 2)(x - 2) + (y - 3)(y - 3) = 4 
(x - 2)² + (y - 3)² = 2² 

center = (2, 3) 

To be concentric, the circle we're looking for also has a center at (2, 3). Since (-4, 5) lies on this circle, we can find the radius by finding the distance between those points. 

r = √[ (-4 - 2)² + (5 - 3)² ] 
r = √40 

(x - a)² + (y - b)² = r²          center = (a, b) 
(x - 2)² + (y - 3)² = (√40)² 
(x - 2)² + (y - 3)² = 40 

3. 
(1, -2) lies on the circle. 
(1 - a)² + (-2 - b)² = r² 

(4, -3) also lies on the circle. 
(4 - a)² + (-3 - b)² = r² 

Since both equations have the same radius, they are equal to each other. 
(1 - a)² + (-2 - b)² = (4 - a)² + (-3 - b)² 
1 - 2a + a² + 4 + 4b + b² = 16 - 8a + a² + 9 + 6b + b² 
a² - a² + b² - b² - 2a + 8a + 4b - 6b + 1 + 4 - 9 - 16 = 0 
6a - 2b - 20 = 0 

(a, b) is the center. Since the center lies on the line 3x + 4y = 7, the following holds true: 
3a + 4b = 7 

6a - 2b - 20 = 0 
6a - 20 = 2b 
(6a - 20) / 2 = b 
3a - 10 = b 

3a + 4b = 7 
3a + 4(3a - 10) = 7 
3a + 12a - 40 = 7 
15a = 47 
a = 47/15 
a = 3.133 

3a - 10 = b 
3(47/15) - 10 = b 
-3/5 = b 
-0.6 = b 

center = (a, b) = (3.133, -0.6) 

Pick one of the points to find the radius. I'll use (1, -2). 
r = √[ (1 - 3.133)² + (-2 - (-0.6))² ] 
r = √6.51 

Answer: 
(x - a)² + (y - b)² = r² 
(x - 3.133)² + (y - (-0.6))² = (√6.51)² 
(x - 3.133)² + (y + 0.6)² = 6.51 

Check: 
(1,-2) and (4,-3) lie on the circle, so plug them in to check. 
(1 - 3.133)² + (-2 + 0.6)² = 6.51 
(4 - 3.133)² + (-3 + 0.6)² = 6.51 

The center coordinates lie on the line, so 
3(3.133) + 4(-0.6) = 7

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...