Flag Differential Calculus> Find the particular integral of the given...
question mark

Find the particular integral of the given equation1.(D^3-D^2-6D) y=1+x^22.(D^2+3D+2) y=1+3x+x^2

Manisha , 4 Years ago
Grade 12th pass
anser 1 Answers
Manika gupta

Last Activity: 3 Years ago


Dear Student
Find your solution here.

1)

Symbolic form becomes: (D3 – D2 – 6D)y = 1 + x2
Auxiliary Equation: D3 – D2 – 6D = 0
Implying D(D + 2)(D – 3) = 0 or D = 0, 3, – 2
yC.F. = (c1 + c2e3x + c3e– 2x)

631-57_Capture.PNG
2)
The “zeroes” of the left-hand side give us the exponent coefficients for the characteristic equation:

Ae⁻ˣ+Be⁻²ˣ where A and B are constants.

Now we look at the right-hand side and assume we can find a solution for y=ax²+bx+c where a, b and c are constants. Next we find values for the constants that will match 1+3x+x².

y'=2ax+b, y''=2a, so y''+3y'+2y=2a+6ax+3b+2ax²+2bx+2c=1+3x+x².

Matching coefficients we get:

x²: 2a=1, so a=½

x: 6a+2b=3, 3+2b=3, so b=0

constant: 2a+3b+2c=1, 1+0+2c=1, so c=0, making y=x²/2.

The complete solution is y=Ae⁻ˣ+Be⁻²ˣ+x²/2

AskIItians Expert

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...