Aditi Chauhan
Last Activity: 10 Years ago
Sol. PV = nRT
Given P = 150 KPa = 150 * 10^3 Pa, V = 150 cm^3 = 150 * 10^-6 m^3, T = 300 k
(a) n = PV/RT = 150 * 10^3 * 150 * 10^-6/8.3 * 300 = 9.036 * 10^-3 = 0.009 moles.
(b) C base P/C baseV = γ ⇒ γR/( γ - 1)C base v = γ [∴ C base P = γR/ γ - 1]
⇒ C base v = R/γ – 1 = 8.3/1.5 – 1 = 8.3/0.5 = 2R = 16.6 J/mole
(c) Given P base 1 = 150 KPa = 150 × 10 base 3 Pa, P base 2 =?
V base 1 = 150 cm^3 = 150 * 10^-6 m^3, γ = 1.5
V basse 2 = 50 cm^3 = 50 * 10^-6 m^3, T base 1 = 300 k, T base 2 = ?
Since the process is adiabatic Hence – P base 1V base 1^γ
⇒ 150 * 10^3 (150 * 10^-6)^γ = P base 2 * (50 * 10^-6) ^γ
⇒ P base 2 = 150 * 10^3 * (150 * 10^-6/50 * 10^-6)^1.5 = 150000 * 3^1.5 = 779.422 * 10^3 Pa = 780 KPa
(d) ∆Q = W + ∆U or W = -∆U [∴ ∆U = 0, in adiabatic]
= - nC base vdT = - 0.009 * 16.6 * (520 - 300) = - 0.009 * 16.6 * 220 = - 32. 8 J = - 33 j
(e) ∆U = nC base vdT = 0.009 * 16.6 * 220 = 33 J