Flag Integral Calculus> Area under a graph...
question mark

To find the area under the graph of a functionffromatob, we divide the interval [a,b] intonsubintervals, all having the same length (b-a)/n. Observe the figure below.

Aman Agarwal , 15 Years ago
Grade 12
anser 1 Answers
Shane Macguire

Last Activity: 15 Years ago

Since f is continuous on each subinterval, f takes on a minimum value at some number ci in each subinterval.
On can construct a rectangle with one side of length [xi - 1, xi], and the other side of length equal to the minimum distance f(ci) from the x-axis to the graph of f.
The area of this rectangle is f(ci) ¤x, where ¤x is (b - a)/n. The boundary of the region formed by the sum of these rectangles is called the inscribed rectangular polygon.
The area (A) under the graph of f from a to b follows below. Note that the summation sign Sigma is not an html character and will be denoted by £.
             n
A = lim £ f(ci) ¤x,      xi - 1 < ci < xi, where ¤x = (b - a)/n.
n-->infinity i = 1
The area A under the graph may also be obtained by means of circumscribed rectangular polygons. In the case of the circumscribed polygons the maximum value of f on the interval [xi - 1, xi] is used.
Remember that the area obtained using circumscribed polygons should always be larger than that obtained by using inscribed rectangular polygons.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...