Flag Integral Calculus> integration of trigonometric functions
question mark

integrate tanx*tan2x*tan3x dx

Kuldeep Mukherjee , 13 Years ago
Grade 12
anser 3 Answers
Sameer Kumar Srivastava

Last Activity: 13 Years ago

using tan3x=(tanx+tan2x)/1+tanxtan2x

we have the given integration as ∫(tanx+tan2x-tan3x)

which is equal to ln|secx|+1/2ln|sec2x|-1/3ln|sce3x|

tell me are you satisfied with my solution.

vikas askiitian expert

Last Activity: 13 Years ago

I = tanxtan2xtan3xdx              ..............1

 

tan3x = tan(x+2x) = tanx + tan2x/1-tanxtan2x

 

tan3x(1-tanxtan2x) = tanx + tan2x

 

tanxtan2xtan3x =  tan3x - tanx - tan2x  .................2

from 1 & 2

I =( tan3x -tanx -tan2x )dx

I = logsec3x/3 - logsec2x/2 - logsecx + C

  =log[ (sec3x)1/3/(sec2x)1/2(secx) ]  + C

approve if u like it

Rishi Sharma

Last Activity: 4 Years ago

Dear Student,
Please find below the solution to your problem.

Let’s get some weapons from our math battle armory :-)
x+2x=3x
tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B)
∫tan(x)dx=ln|sec(x)|+k,k∈R
∫tan(ax+b)dx=1aln|sec(ax+b)|+k,k,a,b∈R
Now let’s enter the battlefield !
tan(3x)=tan(x+2x)=tan(x)+tan(2x)1−tan(x)tan(2x)
Therefore, tan(3x)−tan(x)tan(2x)tan(3x)=tan(x)+tan(2x)
which finally gets us something to work with ! (i.e.)
tan(3x)−tan(2x)−tan(x)=tan(x)tan(2x)tan(3x)
No
∫tan(x)tan(2x)tan(3x)dx=∫tan(3x)−tan(2x)−tan(x)dx=13ln|sec(3x)|−12ln|sec(2x)|−ln|sec(x)|+k,k∈R

Thanks and Regards

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...