Ramesh V
Last Activity: 15 Years ago
(a) int of: tan-1x1/2.dx
take tan-1x1/2 = t
dx/(1+x).2x1/2 = dt
so tan t = x1/2 or x = tan2x
= int of: 2t.tan t(1+tan2t).dt
= int of: 2t.tan t.sec2t.dt
integrating by parts gives :
= 2 [ t.tant2t/2 - int( (tan2t) /2 .dt) ]
= t.tan2t - int( (sec2t) -1).dt
= t.tan2t - tan t + t +C
=x.tan-1x1/2 - x1/2 + tan-1x1/2 + C
=(x+1)tan-1x1/2 - x1/2 + C :where C is constant
(b) int of: cos^4x.dx
Note that: 1 + cos 2A = 2cos2A
so 1 + cos 2x = 2cos2x
=int of : ((1 + cos 2x) / 2 )2
= int of : 1/4*(1 + 2cos 2x+ cos22x).dx
= int of : [ 1/4*(1 + 2cos 2x).dx +1/8*(1 + cos 4x).dx ]
=x/4 + sin 2x /4 +x/8 +sin 4x /32 +C where C is constant
=3x/8 + (sin 2x)/4 + (sin 4x)/32 +C :where C is constant