Flag Integral Calculus> definite integration...
question mark

how could we put the limits in definite integration

pallavi pradeep bhardwaj , 15 Years ago
Grade 12
anser 1 Answers
Askiitian.Expert Rajat

Last Activity: 15 Years ago

Hi,

Let me explain the concept of limits in Definite Integrals by taking a general example :

 

The following problems involve the limit definition of the definite integral of a continuous function of one variable on a closed, bounded interval. Begin with a continuous function $ y=f(x) $ on the interval $ [a, b] $. Let

$ a=x_{0}, x_{1}, x_{2}, x_{3}, $ ... $ , x_{n-2}, x_{n-1}, x_{n}=b $

be an arbitrary (randomly selected) partition of the interval $ [a, b] $ , which divides the interval into $ n $ subintervals (subdivisions). Let

$ c_{1}, c_{2}, c_{3}, $ ... $ , c_{n-2}, c_{n-1}, c_{n} $

be the sampling numbers (or sampling points) selected from the subintervals. That is,

$ c_{1} $ is in $ [x_{0}, x_{1}] $,

$ c_{2} $ is in $ [x_{1}, x_{2}] $,

$ c_{3} $ is in $ [x_{2}, x_{3}] $, ... ,

$ c_{n-2} $ is in $ [x_{n-3}, x_{n-2}] $,

$ c_{n-1} $ is in $ [x_{n-2}, x_{n-1}] $,

and

$ c_{n} $ is in $ [x_{n-1}, x_{n}] $ .

Define the mesh of the partition to be the length of the largest subinterval. That is, let

$ \Delta x_{i} = x_{i} - x_{i-1} \ \ $

for $ i = 1, 2, 3, ..., n $ and define

$ mesh = \displaystyle{ \max_{1 \le i \le n} \{ x_{i} - x_{i-1} \}} $ .

The definite integral of $ f $ on the interval $ [a, b] $ is most generally defined to be

$ \displaystyle{ \int^{b}_{a} f(x) \, dx}
= \displaystyle{ \lim_{mesh \to 0} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i} } $ .

For convenience of computation, a special case of the above definition uses $ n $ subintervals of equal length and sampling points chosen to be the right-hand endpoints of the subintervals. Thus, each subinterval has length

equation (*) $ \ \ \ \ \ \ \ \ \Delta x_{i} = \displaystyle{ b-a \over n } $

for $ i = 1, 2, 3, ..., n $ and the right-hand endpoint formula is

equation (**) $ \ \ \ \ \ \ \ \ c_{i} = \displaystyle{ a + \Big( { b-a \over n } \Big) i } $

for $ i = 1, 2, 3, ..., n $ . The definite integral of $ f $ on the interval $ [a, b] $ can now be alternatively defined by

$ \displaystyle{ \int^{b}_{a} f(x) \, dx}
= \displaystyle{ \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i} } $ .

We will need the following well-known summation rules in case od different types of functions :

  1. $ \displaystyle{ \sum_{i=1}^{n} c = c + c + c + \cdots + c } $ (n times) $ = nc $ , where $ c $ is a constant
  2. $ \displaystyle{ \sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n
    = { n(n+1) \over 2 } } $
  3. $ \displaystyle{ \sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2
    = { n(n+1)(2n+1) \over 6 } } $
  4. $ \displaystyle{ \sum_{i=1}^{n} i^3 = 1^3 + 2^3 + 3^3 + \cdots + n^3
    = { n^2(n+1)^2 \over 4 } } $
  5. $ \displaystyle{ \sum_{i=1}^{n} k f(i) }
    = \displaystyle{ k \sum_{i=1}^{n} f(i) } $ , where $ k $ is a constant
  6. $ \displaystyle{ \sum_{i=1}^{n} (f(i) \pm g(i)) }
    = \displaystyle{ \sum_{i=1}^{n} f(i) \pm \sum_{i=1}^{n} g(i) } $

Be sure to ask if anything's not clear.

Regards and Best of Luck,

Rajat

Askiitian Expert

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...