Flag Integral Calculus> ∫ dx/1-secx what is the value of the inte...
question mark

\t∫dx/1-secx what is the value of the intergal∑(xi-x-)2solve it

Trishna mondal , 6 Years ago
Grade 10
anser 1 Answers
Arun

Last Activity: 6 Years ago

Dear Trishna
 
  –  ∫ [1 /(secx - 1)] dx = 

rearrange it as: 

 
 – ∫ {1 /[(1/cosx) - 1]} dx = 

 – ∫ {1 /[(1 - cosx) /cosx]} dx = 

 – ∫ [cosx /(1 - cosx)] dx = 

recall the half-angle identity sin²(x/2) = (1 - cosx) /2 

hence 1 - cosx = 2sin²(x/2) 

also, recall the double-angle identity cos(2x) = cos²x - sin²x 

hence cosx = cos²(x/2) - sin²(x/2) 

the integral thus becoming: 

 – ∫ [cosx /(1 - cosx)] dx =  – ∫ [cos²(x/2) - sin²(x/2)] /[2sin²(x/2)] dx = 

break it up into: 

 – ∫ (1/2) [cos²(x/2) /sin²(x/2)] + ∫ (1/2) [sin²(x/2) /sin²(x/2)] dx = 

simplifying, you get: 

 – ∫ (1/2) cot²(x/2) + (1/2) ∫ dx = 

rewrite cot²(x/2) as [csc²(x/2) - 1]: 

 – ∫ (1/2) [csc²(x/2) - 1] + (1/2) ∫ dx = 

break it up into: 

 – ∫ (1/2) csc²(x/2) + (1/2) ∫ dx + (1/2) ∫ dx = 

(adding similar terms together) 

 – ∫ (1/2) csc²(x/2) dx + ∫ dx = 

integrating, you get: 

 cot(x/2) + x + c 

thus, in conclusion: 


∫ [1 /(1 - secx)] dx =  cot(x/2) + x + c 


I hope this helps

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...