I was solving this question :$I = \\int_0^1xf(x)\\,dx = \\frac{1}{6}J = \\int_0^1 (f(x))^2\\,dx = \\frac{1}{12}f\\left( \\frac{1}{2} \\right) = ?f(x)t\\int_0^1 (f(x) - tx)^2\\,dx =0 \\int_0^1(f(x))^2,dx -2t\\int_0^1xf(x)\\,dx +t^2\\int_0^1x^2\\,dx =0t = \\frac{1}{2}(f(x) - 0.5x)^200(f(x)-0.5x)^2 =0f(x) = 0.5xf(0.5) = 0.25g(x) \\neq txg(0.5) \\neq 0.25txg(x)g(0.5)$ will have to be 0.25 ?
The Dragonborn , 4 Years ago
Grade 12th pass