Flag Integral Calculus> if integral 1+tan(x-a)tan(x+a)dx=B ln(cos...
question mark

if integral 1+tan(x-a)tan(x+a)dx=B ln(cos(x+a)/cos(x-a))+c then find B\tcot2a\ttan2a\t-cot2a\t-tan2a

chandrika , 5 Years ago
Grade 12th pass
anser 1 Answers
Samyak Jain

Last Activity: 5 Years ago

1 + tan(x – a) tan(x + a)   =   1 + {sin(x – a)/cos(x – a)} {sin(x + a)/cos(x + a)}  
                                                       ...Using tanA = sinA / cosA
                   = [cos(x + a)cos(x – a) + sin(x + a)sin(x – a)] / [cos(x + a)cos(x – a)]           
                   = cos{(x + a) – (x – a)} / cos(x + a)cos(x – a)  =  cos(2a) / cos(x + a)cos(x – a)
    ...Using cosAcosB + sinAsinB = cos(A – B)
                   = sin(2a)/sin(2a) x cos(2a) / cos(x + a)cos(x – a)
                   = cot(2a) . sin2a / cos(x + a)cos(x – a)  =  cot(2a) sin{(x+a) – (x–a)} / cos(x + a)cos(x – a)
                   = cot(2a) . [sin(x+a)cos(x–a) – cos(x+a)sin(x–a)] / cos(x + a)cos(x – a)
   … Using sin(A – B) = sinAcosB – cosAsinB
                   = cot(2a) [tan(x+a) – tan(x–a)]
\therefore ∫ [1 + tan(x – a) tan(x + a)]dx  =  ∫cot(2a) [tan(x+a) – tan(x–a)]dx
              =  cot(2a) [∫ tan(x+a) dx – ∫ tan(x–a) dx]    =   cot(2a)[ln(sec(x+a) – ln(sec(x–a))] + c
              =  cot(2a) ln(sec(x + a) / sec(x – a)) + c    =  cot(2a) ln(cos(x – a) / cos(x + a)) + c
              =  cot(2a) [– ln(cos(x + a) / cos(x – a))] + c
              =  – cot(2a) ln(cos(x + a) / cos(x – a)) + c
\therefore B = – cot(2a)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...