Flag Integral Calculus> Integral [sin(nx)]^2/[sin(x)]^2, upper li...
question mark

Integral [sin(nx)]^2/[sin(x)]^2, upper limit : pi, lower limit : 0

Abhishek Ghatge , 10 Years ago
Grade 12
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
I_{n} = \int_{0}^{\pi}\frac{sin^{2}(nx)}{sin^{2}(x)}dx
I_{1} = \int_{0}^{\pi}\frac{sin^{2}(x)}{sin^{2}(x)}dx
I_{1} = \pi
I_{2} = \int_{0}^{\pi}\frac{sin^{2}(2x)}{sin^{2}(x)}dx
I_{2} = \int_{0}^{\pi}\frac{(2sin(x).cos(x))^{2}}{sin^{2}(x)}dx
I_{2} = \int_{0}^{\pi}4cos^{2}(x)dxI_{2} = \int_{0}^{\pi}2(1+cos(2x))dx = (2x + sin(2x))_{0}^{\pi} = 2\pi
I_{3} = \int_{0}^{\pi}\frac{sin^{2}(3x)}{sin^{2}(x)}dx
I_{3} = (3x + 2sin(2x) + \frac{1}{2}sin (4x))_{0}^{\pi}
I_{3} = 3\pi
I_{4} = \int_{0}^{\pi}\frac{sin^{2}(4x)}{sin^{2}(x)}dx
I_{4} = (4x+3sin(2x) + sin(4x) + \frac{1}{3}sin(6x))_{0}^{\pi}
I_{4} =4\pi
Similarly, when we do for the n, we get
I_{n} =n\pi
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...