Flag Integral Calculus> integration from 0 to pi |1/2 + cos x | d...
question mark

integration from 0 to pi |1/2 + cos x | dx can someone please help me with this

shiya , 5 Years ago
Grade 12th pass
anser 1 Answers
Samyak Jain

Last Activity: 5 Years ago

Examine the graph of 1/2 + cosx from x=0 to \pi, you will find that it is negative for x \small \epsilon (2\small \pi/3 , \small \pi]
\small \therefore \small \int_{0}^{\pi}|1/2 + cosx| = \small \int_{0}^{2\pi /3}(1/2 + cosx)  –  \small \int_{2\pi /3}^{\pi}  (1/2 + cosx)
 
                              = \small \[x/2 + sinx]_{0}^{2\pi /3}  –  \small \[x/2 + sinx]_{2\pi /3}^{\pi}
                              = [(\small \pi/3 + sin2\small \pi/3) – (0 + 0)] – [(\small \pi/2 + 0) – (\small \pi/3 + sin2\small \pi/3)]
                              = (\small \pi/3 + \small \sqrt{3} / 2) – \small \pi/2 + (\small \pi/3 + \small \sqrt{3} / 2)   = 2\small \pi/3 – \small \pi/2 + \small \sqrt{3} 
                              =  \small \pi/6 + \small \sqrt{3}

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...