Flag Integral Calculus> options 3/π log2 2/πlog2 3/π log3 3/π...
question mark

options\t3/π log2\t2/πlog2\t3/π log3\t3/π

Aditya Kartikeya , 10 Years ago
Grade 10
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please find answer to your question below

L = \lim_{n\rightarrow \infty }[tan\frac{\pi }{3n}+tan\frac{2\pi }{3n}+tan\frac{3\pi }{3n}+.................+tan\frac{\pi }{3}]\frac{1}{n}
L = \lim_{n\rightarrow \infty }[\sum_{r = 1}^{n}tan\frac{r\pi }{3n}]\frac{1}{n}
L = \lim_{n\rightarrow \infty }[\sum_{r = 1}^{n}\frac{1}{n}.tan\frac{r\pi }{3n}]
Now we are going to convert it into definite integral using the definition
\frac{r}{n} = x,\sum_{r = 1}^{n}\frac{1}{n} = dx
Limit is from 0 to 1.
L = \int_{0}^{1}tan\frac{\pi x}{3}dx
L = \int_{0}^{1}\frac{sin\frac{\pi x}{3}}{cos\frac{\pi x}{3}}dx
L = \frac{3}{\pi }\int_{0}^{1}\frac{\frac{\pi }{3}.sin\frac{\pi x}{3}}{cos\frac{\pi x}{3}}dx
cos\frac{\pi x}{3} = t
-\frac{\pi }{3}sin\frac{\pi x}{3}dx = dt
x = 0\rightarrow t = 1
x = 1\rightarrow t = \frac{1}{2}
L = \frac{3}{\pi }\int_{1}^{1/2}\frac{-1}{t}dt
L = \frac{3}{\pi }\int_{1/2}^{1}\frac{1}{t}dt
L = \frac{3}{\pi }[logt]_{1/2}^{1}
L = \frac{3}{\pi }[-log(1/2)]
L = \frac{3}{\pi }[log(2)]
Option (1) is correct.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...