Flag Mechanics> When two soap of different diameter are c...
question mark

When two soap of different diameter are connected by a tube the small bubbles gradual collapse and large bubbles grow bigger

shija nonga , 3 Years ago
Grade 12
anser 2 Answers
hmhm

Last Activity: 3 Years ago

 
Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  

hmhm

Last Activity: 3 Years ago

Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  Three identical rigid circular cylinders A, B and C each of mass m are arranged on smooth inclined surfaces as shown in figure. The value of  is least such that it prevents the arrangement from collapsing. Then A) 1 1 tan 2 3  −   =     B) 1 1 tan 3 3  −   =     C) Normal reaction between A & B is zero D) Normal reaction on C is 3 mg  

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...