as mentioned )to give a yellow-orange azo compound. The reaction is base-catalysed.
kiran kumar
Last Activity: 11 Years ago
Diazonium ions are present in solutions such as benzenediazonium chloride solution. They contain an -N2+ group. In the case of benzenediazonium chloride, this is attached to a benzene ring.
Benzenediazonium chloride looks like this:
In this set of reactions of the diazonium ion, the -N2+ group is replaced by something else. The nitrogen is released as nitrogen gas.
Substitution by an -OH group
To get this reaction, all you need to do is warm the benzenediazonium chloride solution. The diazonium ion reacts with the water in the solution and phenol is formed - either in solution or as a black oily liquid (depending on how much is formed). Nitrogen gas is evolved.
This is the same reaction that you get if you react phenylamine with nitrous acid in the warm. The diazonium ion is formed first and then immediately reacts with the water in the solution to give phenol.
Substitution by an iodine atom
This is a good example of the use of diazonium salts to substitute things into a benzene ring which are otherwise quite difficult to attach. (That''s equally true of the previous reaction, by the way.)
If you add potassium iodide solution to the benzenediazonium chloride solution in the cold, nitrogen gas is given off, and you get oily droplets of iodobenzene formed.
There is a simple reaction between the diazonium ions and the iodide ions from the potassium iodide solution.
Coupling reactions of diazonium ions
In the substitution reactions above, the nitrogen in the diazonium ion is lost. In the rest of the reactions on this page, the nitrogen is retained and used to make a bridge between two benzene rings.
The reaction with phenol
Phenol is dissolved in sodium hydroxide solution to give a solution of sodium phenoxide.
The solution is cooled in ice, and cold benzenediazonium chloride solution is added. There is a reaction between the diazonium ion and the phenoxide ion and a yellow-orange solution or precipitate is formed.
The product is one of the simplest of what are known as azo compounds, in which two benzene rings are linked by a nitrogen bridge.
Provide a better Answer & Earn Cool Goodies
Enter text here...
LIVE ONLINE CLASSES
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Ask a Doubt
Get your questions answered by the expert for free