Flag Trigonometry> Cos(2pi/2n+1) +cos(4pi/2n+1)+cos(6pi/2na1...
question mark

Cos(2pi/2n+1) +cos(4pi/2n+1)+cos(6pi/2na1).......+cos(2npi/2n+1)

Abhinav Acharya , 11 Years ago
Grade 11
anser 2 Answers
Arun Kumar

Last Activity: 11 Years ago

Hello Student,
let
x=2pi/(2n+1)
=>
cosx+cos2x+cos3x+cos4x.......cosn=sin((n+1)x/2)cos(nx/2)/sin(x/2)
replace x by its value
Thanks & Regards
Arun Kumar
Btech, IIT Delhi
Askiitians Faculty
Sumit Majumdar

Last Activity: 11 Years ago

Dear student,
You may use the following result:
LetS=\cos\alpha+\cos 2\alpha+\ldots+\cos n\alpha

Now multiply both members with2\sin\frac{\alpha}{2}

2\sin\frac{\alpha}{2}S=2\sin\frac{\alpha}{2}\cos \alpha+2\sin\frac{\alpha}{2}\cos 2\alpha+\ldots+2\sin\frac{\alpha}{2}\cos n\alpha

Using the identity2\sin a\cos b=\sin(a+b)-\sin(b-a)we have

2\sin\frac{\alpha}{2}S=\sin\frac{3\alpha}{2}-\sin\frac{\alpha}{2}+\sin\frac{5\alpha}{2}-\sin\frac{3\alpha}{2}+\ldots+\sin\frac{(2n+1) \alpha}{2}-\sin\frac{(2n-1)\alpha}{2}

2\sin\frac{\alpha}{2}S=\sin\frac{(2n+1)\alpha}{2}-\sin\frac{\alpha}{2}

2\sin\frac{\alpha}{2}S=2\sin\frac{n\alpha}{2}\cos \frac{(n+1)\alpha}{2}

ThenS=\dfrac{\sin\frac{n\alpha}{2}\cos\frac{(n+1)\alph  a}{2}}{\sin\frac{\alpha}{2}}

Substitute\alphawith\frac{2\pi}{2n+1}

ThenS=\dfrac{\sin \frac{n\pi}{2n+1} \cos \frac{(n+1) \pi}{2n+1}}{\sin\frac{\pi}{2n+1}}=

=\frac{1}{2}\cdot\dfrac{\sin\pi-\sin\frac{\pi}{2n+1}}{\sin\frac{\pi}{2n+1}}=\frac{  1}{2}\cdot\left(-\dfrac{\sin\frac{\pi}{2n+1}}{\sin\frac{\pi}{2n+1}}  \right)=-\frac{1}{2}
Regards
Sumit
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments