Soumendu Majumdar
Last Activity: 6 Years ago
cos A + cos C = sin B
Now using the formula cos X + cos Y = 2 cos(X + Y)/2 cos(X – Y)/2
so L.H.S= 2{ cos(A + C)/2 }{ cos(A – C)/2 }
A + B + C = 180 degrees
so B/2 = 90 – (A + C)/2
so L.H.S= 2sin(B/2){ cos(A – C)/2 }
Using sin 2X = 2 sin X cos X
R.H.S = 2 sin (B/2) cos (B/2)
So from L.H.S & R.H.S
we get
cos(A – C)/2 = cos B/2
so A – C = B
implies 2 A = A + B + C = 180 degrees
so A = 90 degrees
Hence BAC is a right angled triangle