Saurabh Koranglekar
Last Activity: 6 Years ago
We are given the equations:
cosecθ - sinθ = m
secθ - cosθ = n
We need to eliminate θ and find the relation between m and n.
Step 1: Express in Terms of Sin and Cos
Using trigonometric identities:
cosecθ = 1/sinθ
secθ = 1/cosθ
Rewriting the given equations:
(1/sinθ) - sinθ = m
⇒ (1 - sin²θ) / sinθ = m
⇒ cos²θ / sinθ = m …(i)
(1/cosθ) - cosθ = n
⇒ (1 - cos²θ) / cosθ = n
⇒ sin²θ / cosθ = n …(ii)
Step 2: Multiply Equations (i) and (ii)
Multiplying both sides:
(cos²θ / sinθ) * (sin²θ / cosθ) = m * n
Simplify:
(cos²θ * sin²θ) / (sinθ * cosθ) = m * n
Using sinθ * cosθ in the denominator:
(sinθ * cosθ) / (sinθ * cosθ) = m * n
Since (sinθ * cosθ) / (sinθ * cosθ) = 1,
We get:
m * n = 1
Conclusion:
The required relation between m and n is:
m * n = 1