Flag Trigonometry> In a triangle (a+b+c) (a+b-c) (b+c-a) (c+...
question mark

In a triangle (a+b+c) (a+b-c) (b+c-a) (c+a-b) =8a^2b^2c^2/ a^2+b^2+c^2 then the triangle is right angled prove that.

Abhinav Singh , 8 Years ago
Grade 11
anser 1 Answers
mycroft holmes

Last Activity: 8 Years ago

Let s = (a+b+c)/2. Then LHS = 16 s(s-a)(s-b)(s-c) = 16A2 = 4a2b2 sin2C.
 
Hence we have 4a^2b^2 \sin^2 C = \frac{{}8a^2b^2c^2}{a^2+b^2+c^2}
 
or \sin^2 C = \frac{2c^2}{a^2+b^2+c^2} and hence
 
\cos^2 C = \frac{a^2+b^2-c^2}{a^2+b^2+c^2}. Using the cosine formula, this implies 
 
\frac{(a^2+b^2-c^2)^2}{4a^2b^2} = \frac{a^2+b^2-c^2}{a^2+b^2+c^2} and hence
 
(a^2+b^2-c^2)(a^2+b^2+c^2)= 4a^2b^2
 
or (a^2+b^2)^2 - c^4= 4a^2b^2
 
\Rightarrow (a^2+b^2)^2 - 4a^2b^2- c^4= 0 or
\Rightarrow (a^2-b^2)^2 - c^4= 0
\Rightarrow (a^2-b^2+c^2) (a^2-b^2- c^2)= 0
\Rightarrow a^2+c^2 = b^2 or \Rightarrow a^2 = b^2+c^2 and hence we have a right angled triangle

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...