Flag Trigonometry> Please provide the solution of question n...
question mark

Please provide the solution of question number 29 as soon as possible!

Paridhi sharma , 6 Years ago
Grade 11
anser 1 Answers
Sami Ullah

Last Activity: 6 Years ago

First        cos\theta =2cos^{2}\frac{\theta}{2}-1
 
So
 
2cos^{2}\frac{\theta}{2}-1=\frac{cos\alpha cos\beta }{1-sin\alpha sin\beta }
2cos^{2}\frac{\theta}{2}=\frac{cos\alpha cos\beta }{1-sin\alpha sin\beta }+1
2cos^{2}\frac{\theta}{2}=\frac{cos\alpha cos\beta-sin\alpha sin\beta+1 }{1-sin\alpha sin\beta }
cos^{2}\frac{\theta}{2}=\frac{cos(\alpha +\beta )+1 }{2+(-2sin\alpha sin\beta )}
cos^{2}\frac{\theta}{2}=\frac{1+cos(\alpha +\beta )}{2+cos(\alpha+\beta )-cos(\alpha -\beta )}
sec^{2}\frac{\theta}{2}=\frac{2+cos(\alpha+\beta )-cos(\alpha -\beta)}{ 1+cos(\alpha +\beta)}
sec^{2}\frac{\theta}{2}-1=\frac{2+cos(\alpha+\beta )-cos(\alpha -\beta)}{ 1+cos(\alpha +\beta)}-1
tan^{2}\frac{\theta}{2}=\frac{2+cos(\alpha+\beta )-cos(\alpha -\beta)-1-cos(\alpha +\beta)}{1+cos(\alpha +\beta) }
tan^{2}\frac{\theta}{2}=\frac{1-cos(\alpha -\beta)}{1+cos(\alpha +\beta) }
tan^{2}\frac{\theta}{2}=\frac{2sin^{2}(\frac{\alpha -\beta }{2})}{2cos^{2}(\frac{\alpha +\beta }{2}) }
Taking square root on both sides.
 
tan\frac{\theta}{2}=\frac{sin(\frac{\alpha -\beta }{2})}{cos(\frac{\alpha +\beta }{2}) }
tan\frac{\theta}{2}=\frac{sin(\frac{\alpha }{2}-\frac{\beta }{2})}{cos(\frac{\alpha }{2}+\frac{\beta }{2}) }
tan\frac{\theta}{2}=\frac{sin\frac{\alpha }{2}cos\frac{\beta }{2}-cos\frac{\alpha }{2}sin\frac{\beta }{2}}{cos\frac{\alpha }{2}cos\frac{\beta }{2}-sin\frac{\alpha }{2}sin\frac{\beta }{2} }
 
Dividing up and down by   cos\frac{\alpha }{2}cos\frac{\beta }{2},So we get ,
 
 
tan\frac{\theta}{2}=\frac{\frac{sin\frac{\alpha }{2}}{cos\frac{\alpha }{2}}-\frac{sin\frac{\beta }{2}}{cos\frac{\beta }{2}}}{1-\frac{sin\frac{\alpha }{2}sin\frac{\beta }{2}}{cos\frac{\alpha }{2}cos\frac{\beta }{2}} }
tan\frac{\theta}{2}=\frac{tan\frac{\alpha }{2}-tan\frac{\beta }{2}}{1-tan\frac{\alpha }{2}tan\frac{\beta }{2}}
 
And you are there.
This was what I could read in the question you posted.I didn’t get what was the whole question about.
Please correct my mistakes (IF ANY).  

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...