Flag Trigonometry> What is the maximum value of 1+8(sin^2×x^...
question mark

What is the maximum value of 1+8(sin^2×x^2×cos^2×x^2)

Shamitha , 7 Years ago
Grade 9
anser 3 Answers
Akash goel

Last Activity: 7 Years ago

9 can be maximum value of the function.Since the sin(x) and cos(x) lies between -1 and 1.It could be:=1+8(1 X 1)=1+8=9

yathartha gupta

Last Activity: 7 Years ago

Sinx,cosx have the values between -1,+1Then sin^2x,cos^2x will have values 0,1Then put sin^2x and cos ^x 1Let,`s do = 1+8(1×1×1×1) = 1+8 =9

Shamitha

Last Activity: 7 Years ago

=1+8(sin^2x^2cos^2x^2)=1+2(4sin^2x^2cos^2x^2)=1+2(2sinx^2cosx^2)^2 [2sinx^2cisx^2 is in the form of 2sinAcosB => sin(A+B)-sin(A-B) = sin(2x^2)-sin(0) = sin2x^2]=1+2(sin(2x^2))^2 = 1+2sin^2×2x^2[cos2A=1-2sin^2×A => 2sin^2×x^2=cos4x^2-1]=1+cos4x^2-1=2-cos4x^2Maximum value (General form = asinx+bcosx+c) => c+ root over a^2+b^2=here; in 2-cos4x^2; a=1, b=0, c=2If we calculate using maximum value formula we get [ 3 ]

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...