Flag Vectors> Sir Pls prove that the vector area of a t...
question mark

SirPls prove that the vector area of a triangle whose vertices are a vector bvector and cvector is0.5(bvec cross cvector +cvector cross a vec+ a vector cross b vector)Thanks and Rgds,Jai

Jai Mahajan , 10 Years ago
Grade 12
anser 2 Answers
bharat bajaj

Last Activity: 10 Years ago

Let A be the endpoint of \underset{A}{\rightarrow}, B be the endpoint of vector \underset{B}{\rightarrow}, and C be the endpoint of vector \underset{C}{\rightarrow}.

Then the vector from A to B is \underset{B-A}{\rightarrow}, and the vector from A to C is \underset{C-A}{\rightarrow}.

So (1/2) | \underset{B-A}{\rightarrow}X\underset{C-A}{\rightarrow}| is the area of the triangle. ( magnitude of the cross-product is equal to the area of the parallelogram determined by the two vectors, and the area of the triangle is one-half the area of the parallelogram.)

(B-A) X(C-A) = B X C - B X A - A X C + A X A

The cross product of a vector with itself is zero, and A X B = – B X A, so(B-A) X (C-A) = B X C + A X B + C X A

which means that(1/2) | (B-A) X (C-A) | = (1/2) | B X C + A X B + C X A | = area of the triangle.

Thanks & Regards

Bharat Bajaj

askiitian faculty
IIT Delhi

Sumit Majumdar

Last Activity: 10 Years ago

Dear student,
Let the vertices be given by the vectors:
\overrightarrow{A}=\left ( a_{1}, a_{2}, a_{3} \right ), \overrightarrow{B}=\left ( b_{1}, b_{2}, b_{3} \right ), \overrightarrow{C}=\left ( c_{1}, c_{2}, c_{3} \right )
So, the area would be given by:
\Delta =\frac{1}{2}\sqrt{\begin{vmatrix} a_{2} & a_{3} & 1\\ b_{2} & b_{3} & 1\\ c_{2} & c_{3}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{3} & a_{1} & 1\\ b_{3} & b_{1} & 1\\ c_{3} & c_{1}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{1} & a_{2} & 1\\ b_{1} & b_{2} & 1\\ c_{1} & c_{2}& 1 \end{vmatrix}^{2}}\Delta =\frac{1}{2}\sqrt{\begin{vmatrix} a_{2} & a_{3} & 1\\ b_{2} & b_{3} & 1\\ c_{2} & c_{3}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{3} & a_{1} & 1\\ b_{3} & b_{1} & 1\\ c_{3} & c_{1}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{1} & a_{2} & 1\\ b_{1} & b_{2} & 1\\ c_{1} & c_{2}& 1 \end{vmatrix}^{2}}=\frac{1}{2}\left | \left ( A\times B \right )\cdot C \right |
Regards
Sumit

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...