Flag Wave Optics> Obtain expressions for reflection and tra...
question mark

Obtain expressions for reflection and transmission amplitude coefficientswhenelectric vector associated with a plane monochromatic em waves in the plane of incidence.

Aiswarya prathap , 5 Years ago
Grade 12th pass
anser 1 Answers
Arun

Last Activity: 5 Years ago

Transverse waves oscillate in (y) perpendicular to the direction (positive x)
of propagation.  X-axis is along the string.  Let F be the tension
force in the string at any x.

     y(x, t) = Ai  Sin (ω t – k₁ x)    with an initial phase of 
0,  at  t = x = 0
             ω = angular
freq.  Wavelength = λ₁, wave
number = k₁ = 2π/λ₁ , 
            T =
time period 
            
velocity in x direction = v₁ = λ₁/T        k₁ = ω/v₁
let μ₁ = mass per
unit length of the string.   We can derive that :  v₁ = √(F/ μ₁)
So  F = μ₁ v₁² = v₁ Z₁, 
where Characteristic impedance of the string = Z₁ = μ₁ * v₁

      k₁ is the wave
number specific to the string and it may depend on the impedance of the string,
mass per unit length and temperature.   Suppose the wave encounters a
heavier string of higher wave number k₂, and impedance Z₂, then most of the energy in the wave is reflected. 
A little is transmitted.   The reflected wave has a phase difference
of π with the incident wave.  The transmitted wave has the same 
phase as the incident wave.   Frequency of the wave remains same in both
strings.

   Let  k₂, λ₂, v₂, Z₂  be the wave number, wavelength, velocity and
characteristic impedance of the wave on the second string.   Let both
strings meet at  x = L  and at   t = t₁.
                
So   v₂ = √(F/ μ₂)         and
    F = μ₂ v₂² = v₂  Z₂
                
Since, F = v₁ * Z₁ = v₂ *Z₂,  
we get   v₁ / v₂ = Z₂/Z₁ = k₂/k₁
 
      Yr (x, t) = Ar  Sin (ω (t-t₁) - k₁ (L- x) + θ)   where Ar = amplitude of
reflected wave. 
             As the
phase difference with Yi(x,t) is  π at x =L and t= t₁,  we get:
               
ω (t-t₁) - k₁(L-x) + θ = ω t₁ - k₁ L -
π       =>    θ = ω t₁ - k₁ L – π
         =>
      Yr(x,t) = Ar Sin [ω t - k₁(L- x) + k₁ L - π]

        Yt (x, t) = At  Sin [ω (t-t₁) - k₂ (x-L) + Ф)  , where At = amplitude of transmitted
wave
           as phase angle is
same as Yi(x,t) at  x = L and t = t₁ , we get
              ω (t-t₁) - k₂ (x-L) + Ф = ω t – k₁ x     => Ф = (k₂ – k₁) L 
           =>  Yt(x, t) = At Sin [[ω t -
k₂ x + (k₂  - k₁) L]

Boundary conditions :

1) Displacement of the initial wave is the algebraic sum of the other two
displacements at the boundary of the two strings.  It is like vector or
phasor addition.  Let δ be the phase angle of incident wave at the
boundary.
       Ai Sin δ  =  Ar Sin (δ - π) + At
Sin δ
                  
Ai   = At – Ar       =>  Ai +
Ar = At   --- (1)

2)   The energy incident at the boundary (per unit time) is split
into two components: reflected and transmitted.  Using the conservation of
energy principle, we get:

               
1/2  μ1 v1 ω^2  Ar^2 + 1/2 μ2 v2 ω^2 At^2 =  1/2  μ1 v1
ω^2  Ai^2 
                   => 
  Z1 (Ai^2 – Ar^2) = Z2  At^2
               
   =>   Z1 (Ai - Ar ) = Z2
At      --- (2)

Solving (1) and (2) we get:
               Ar = (Z1 – Z2) Ai  /
(Z₁ + Z₂)     
And     At = 2 Z₁ Ai /(Z₁ + Z₂ )
        Or,    Ar = (k₁ – k₂) Ai / (k₁ + k₂)     and     At
= 2 k₁ Ai /(k₁ + k₂)
       Or      Ar = (v₂ – v₁) Ai / (v₁ + v₂)     and      At
= 2 v₂ Ai /(v₁ + v₂)
 
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...