Solved Examples

Example 1:

        Find the coefficient of the independent term of x in expansion of  (3x - (2/x2))15.

Solution:

       The general term of (3x - (2/x2))15 is written, as Tr+1 = 15Cr (3x)15-r (-2/x2)r. It is independent of x if,

        15 - r - 2r = 0 => r = 5

  .Ā·.   T6 = 15C5(3)10(-2)5 = - 16C5 310 25.                          

Example 2:

        If the coefficient of (2r + 4)th and (r - 2)th terms in the expansion of (1+x)18 are equal then find the value of r.

Solution:

        The general term of (1 + x)n is Tr+1 = Crxr

        Hence coefficient of (2r + 4)th term will be

        T2r+4 = T2r+3+1 = 18C2r+3

and coefficient or (r - 2)th term will be

        Tr-2 = Tr-3+1 = 18Cr-3.

        => 18C2r+3 = 18Cr-3.

        => (2r + 3) + (r-3) = 18 (Ā·.Ā· nCr = nCK => r = k or r + k = n)

.Ā·.     r = 6                                                                

Example 3:

        If a1, a2, a3 and a4 are the coefficients of any four consecutive terms in the  expansion of (1+x)n then prove that: 

        a1/(a1+a2) + a2/(a3+a4) = 2a2/(a2+a3)

Solution:

        As a1, a2, a3 and a4 are coefficients of consecutive terms, then

        Let    a1 = nCr

                a2 = nCr+1

                a3 = nCr+2 and

                a4 = nCr+3

        Now  a1/(a1+a2) = nCr/(nCr+nCr+1)  = 1/(1+((n-r)/(r+1))) = (r+1)/(n+1)

        Similarly, a2/(a2+a3) = (r+3)/(n+1)

        Now  a3/(a3+a4) + a1/(a1+a2) = (2r+4)/(n+1)

               = 2(r+1)/(n+1) = 2a2/(a2+a3)                              (Hence, proved)

Example 4:

        Find out which one is larger 9950 + 10050 or 10150.

Solution:

        Let's try to find out 10150 - 9950 in terms of remaining term i.e.

                10150 - 9950 = (100+1)50 - (100 - 1)50

                = (C0.10050 + C110049 + C2.10048 +......)

                = (C010050 - C110049 + C210048 -......)

                = 2[C1.10049 + C310047 +.........]

                = 2[50.10049 + C310047 +.........]

                = 10050 + 2[C310047 +............]

                > 10050

                => 10150 > 9950 + 10050                                

  Example 5:

        Find the value of the greatest term in the expansion of āˆš3(1+(1/āˆš3))20.

Solution:

        Let Tr+1 be the greatest term, then Tr < Tr+1 > Tr+2

        Consider : Tr+1 > Tr

                => 20Cr   (1/āˆš3)r > 20Cr-1(1/āˆš3)r-1    

                => ((20)!/(20-r)!r!) (1/(āˆš3)r)  >  ((20)!/(21-r)!(r-1)!) (1/(āˆš3)r-1)

                => r < 21/(āˆš3+1)

                => r < 7.686                                               ......... (i)

        Similarly, considering Tr+1 > Tr+2

                 => r > 6.69                                              .......... (ii)

        From (i) and (ii), we get

                        r = 7

        Hence greatest term = T8 = 25840/9

Example 6:

Find the coefficient of x50 in the expansion of (1+x)1000 + 2x(1+x)999 + 3x2 (1+x)998 +...+ 1001x1000.

Solution:

        Let S = (1 + x)1000 + 2x(1+x)999 +...+ 1000x999 (1+x) + 1001 x1000

        This is an Arithmetic Geometric Series with r = x/(1+x) and d = 1.

        Now  (x/(1+x)) S = x(1 + x)999 + 2x2 (1 + x)998 +...+ 1000x1000 + 1000x1001/(1+x)

        Subtracting we get,

        (1 - (x/(x+1))) S =(1+x)1000 + x(1+x)999 +...+ x1000 - 1001x1000/(1+x)

        or S = (1+x)1001 + x(1+x)1000 + x2(1+x)999 +...+ x1000 (1+x)-1001x1001

        This is G.P. and sum is

        S = (1+x)1002 - x1002 - 1002x1001

        So the coeff. of x50 is = 1002C50                                      

Example 7:

        Show that  symbol2 nCk (sin kx) cos (n-k)x = 2n-1 sin(nx)

Solution:

        We have symbol2nCk sin kx cos (n-k)x

                =1/2 symbol2 nCk [sin (k x + nx - kx) + sin (kx - nx + kx)]

                =1/2symbol2 nCk sin n x + 1/2 symbol2 nCk sin (2kx - nx)

                = 1/2 sin n x symbol2 nCk 1/2 [nC0 sin (-nx) + nC1 sin (2-n)x +...

                ...+ nCn-1 sin (n-2)x + nCn sin nx]

= 2n-1 sin nx + 0 (as terms in bracket, which are equidistant, from end and beginning will cancel each other). 

(Hence, proved)

 Example 8:

        If (15+6āˆš6)2n+1 = P, then prove that P(1 - F) = 92n+1 (where F is the fractional part of P).

Solution:

       We can write

       P = (15+6āˆš6)2n+1  = I + F (Where I is integral and F is the fractional part of P)

       Let F' = (15+6āˆš6)2n+1

 

Note:      6āˆš6  = 14.69 

                   => 0 < 156āˆš6  < 1 

                   => 0 < (15+6āˆš6)2n+1  < 1 

                  => 0 < F' < 1

        Now,  I + F = C0 (15)2n+1 + C1(15)2n 6āˆš6  + C2 (15)2n (6āˆš6 )2 +...

                F' = C0 (15)2n+1 - C1(15)2n 6āˆš6  + C2(15)2n-1 (6āˆš6 )2 +...

                I + F + F' = 2[C0 (15)2n+1 + C2 (15)2n-1 (6āˆš6 )2 +...]

        Term on R.H.S. is an even integer.

        =>     I + F + F' = Even integer

        =>     F + F' = Integer

        But,   0 < F < 1 and             (F is fraction part)

                0 < F' < 1

        =>    0 < F + F' < 2

        Hence F + F' = 1

                F' = (1-f)

        .Ā·.     P(1-F) = (15 + 6āˆš6 )2n+1 (15-6āˆš6 )2n+1

                = (9)2n+1                                           (Hence, proved)

Example 9:

        Using āˆ«01(tx+a-x)n dx,prove that āˆ«01xk (1-x)(n-k) dx=[ nCk (n+1)](-1)

Solution:

        The given integral can easily be evaluated, as follows:

                I = āˆ«01(tx+a-x)n dx

                  = āˆ«01((t-1)x+1)n  dx

                   = [((t-1)x+1)(n+1)/((n+1)(t-1))]01

         =(t(n+1)-1)/(n+1)(t-1)=1/(1+n)  [1 + t + t2 +...+ tk +...+ tn]      ...... (i)

         Also, I = āˆ«01(tx+(1-x))n dx

             =āˆ«01symbol2 nCk (1-x)(n-K) tk xk  dx                                   ...... (ii)

        Comparing the coefficient of tk from (i) and (ii), we get,

                     āˆ«01  nCk. xk (1-x)n-k dx=1/(n+1)

                    => āˆ«01xk (1-x)n-k dx = 1/( nCk (n+1))              

                          (Hence, proved)

Example 10:

Prove that equation17 (-3)r-1 3nC2r-1= where k = 3n/2  and n is an even positive integer.

Solution:

           Since n is even integer, let n = 2m,

           k = 3n/2 = 6m/2 =3m

           The summation becomes,

           S = equation16

           Now, (1+x)6m = 6mC0 + 6mC1 x + 6mC2 x2 +...

                                        ...+ 6mC6m-1 x6m-1 + 6mC6m x6m          ...... (i)

                (1-x)6m = 6mC0 + 6mC1 (-x) + 6mC2 (-x)2 +...

                                ...+ 6mC6m-1 (-x)6m-1 + 6mC6m (-x)6m          ...... (ii)

                => (1+x)6m - (1-x)6m = 2[6mC1x + 6mC3x2 +...+ 6mC6m-1x6m-2]

                ((1+x)6m - (1-x)6m)/2x = 6mC1 + 6mC3  x2 +......+ 6mC6m-1  x6m - 2

          Let x2 = y

          =>((1 + āˆšy)6m-(1-āˆšy)6m)/2āˆšy=6mC1+6mC3y  + 6mC3 y+......6mC6m-1 y3m-1

          With y = -3, RHS becomes = S.

            LHS =  

           equation15

                       (Hence, proved)

Example 11:

        If k and n are two positive integers and

                Sk = 1k + 2k +.........+ nk

        Then show that

                m+1C1S1 + m+1C2S2 +......+ m+1CmSm = (1+n)m+1 - (1+n)

Solution:

        We have,

                (1 + p)m+1 = m+1C0 + m+1C1 p + m+1C2 p2 + m+1Cm+1 pm+1

        Putting p = 1, 2, 3, ........., n

       =>2m+1 - 1      = m+1C0 + m+1C1(1) + m+1C2(1)2 +...+ m+1Cm(1)m

           3m+1 - 2m+1 = m+1C0 + m+1C1(2) + m+1C2(2)2 +...+ m+1Cm(2)m

           4m+1 - 3m+1 = m+1C0 + m+1C1(3) + m+1C2(3)2 +...+ m+1Cm(3)m

              symbol4

          (1+n)m+1-nm+1 = m+1C0(n) + m+1C2 Ī£n + m+1C2 Ī£(n)2 +...+ m+1Cm āˆ‘(n)m.

           Adding all these terms, we get

             (1+n)m+1 -1 = m+1C0(n) + m+1C1S1 + m+1C2S2 +...+ m+1CmSm

       =>m+1C1S1 + m+1C2S2 +...+ m+1CmSm = (1+n)m+1 - (1+n)         

                 (Hence, proved)

Example 12:

        Given that Sn = 1 + q + q2 +....+ qn

        and Pn = 1 + ((q+1)/2) + ((q+1)/2)2 + ....+((q+1)/2)n

        show that n+1C1 + n+1C2S1 + n+1C2S2 +...+ n+1Cn+1 Sn = 2n pn.

Solution:

        Both Sn and Pn are geometric series

              Sn = 1 + q + q2 +......qn = 1-qn-1/1-q                                   ...... (i)

              Pn = 1 + ((q+1)/2) + ((q+1)/2)2 +.....+((q+1)/2)n

             =(1-((q+1)/2)n+1)/(1-(q+1)/2)=1/2n(2n+1-(q+1)n+1)/(1-q)         ...... (ii)

             n+1Cr+1Sr = n+1Cr+1 ((1-qr+1)/(1-q)) =  n+1Cr+1 ((1/(1-q)) - (qr+1/(1-q)))

             =  (1/(1-q))n+1Cr+1 -  (1/(1-q)) n+1Cr+1 qr+1

             =>symbol3n+1Cr+1 Sr=(1/(1-q))symbol3n+1Cr+1- (1/(1-q))symbol3n+1Cr+1 qr+1

             => āˆ‘n+1Cr+1Sr = 2npn                              (Hence, proved)

Example 13:

        Show that if Cr is the coefficient of xr in (1+x)n, then

        symbol3Cr3  = Coefficient of xn yn in the expression of ((1+x)(1+y)(x+y))n

Solution:

        (1+x)n = nC0 + nC1 x + nC2 x2 +...+ nCn xn                        ...... (1)

        (1+y)n = nC0 + nC1 y + nC2 y2 +...+ nCn yn                         ...... (2)

        (x+y)n = nC0 xn + nC1 xn-1 y + nC2 xn-2 +...+ nCn yn          ....... (3)

        writing (1+y)n as (y+1)n and expanding it in decreasing powers of y.

                (y+1)n = nC0yn + nC1yn-1 + nC2yn-2 +...+ nCn            ....... (4)

        multiplying (1), (3) and (4) we get,

                (1+x)n (y+1)n (x+y)n

                = (nC0 + nC1x + nC2x2 +...+ nCnxn) Ɨ (nC0yn + nC1yn-1 +...+ nCn)

                Ɨ (nC0xn + nC1xn-1y +...+ nCnyn)

        Now, coefficient of xnyn in RHS = nC03 + nC13 + nC23 +... nCn3

                = coefficient of xnyn in LHS

                = coefficient of xnyn in {(1+x)(1+y)(x+y)}n              

       (Hence, proved)

Example 14:

        If (1+x)n = C0 + C1x + C2x2 +...+ Cnxn (nĪµN)

        Then show that symbol2k3 [Ck/Ck-1] = 1/12 (n)(n+1)2(n+2)

Solution:

         Cr/Cr-1 = (n!/(n-r)!r!) (((r-1)!(n-r+1)!)/n!) = (((n+1)/r)-1)

        r3(Cr/Cr-1) = ((n+1)/r-1) r3 = (n+1)r2 - r3

        = symbol5

        (n+1)n(n+1)(2n+1)/6-(n2 (n+1)2)/4

        = n(n+1)/12 [4n2 + 6n + 2 - 3n2 - 3n] = n(n+1)(n2+3n+2)/12

        n(n+1)(n+1)(n+2)/12=(n(n+1)2 (n+2))/12                                          

(Hence, proved)

Example 15:

        If (1+x)n = C0 + C1 x + C2 x2 +...+ Cn xn then show that

        (i) āˆ‘0ā‰¤i<jā‰¤n  Ci Cj = 22n-1symbol6

        (ii) āˆ‘0ā‰¤i<jā‰¤n  (Ci + Cj)2 = (n - 1) 2nCn + 22n

        (iii) āˆ‘0ā‰¤i<jā‰¤n   āˆ‘Ci  Cj = n (22n-1 - 1/2 2nCn)

Solution:

(i)     We have

        (C0 + C1 + C2 +...+ Cn)2 = C02 + C12 +...+ Cn2 + 2 āˆ‘0ā‰¤i<jā‰¤n   āˆ‘Ci  Cj

        we get, (2n)2 = 2nCn + 2 āˆ‘0ā‰¤i<jā‰¤n   āˆ‘Ci  Cj

        therefore  āˆ‘0ā‰¤i<jā‰¤n   āˆ‘Ci  Cj = 22n-1 - (2n)!/2(n!)2                         

(Hence, proved)

(ii)   āˆ‘0ā‰¤i<jā‰¤n   āˆ‘Ci  Cj  n(C02 + C12 + C22 +...+ Cn2) + 2āˆ‘0ā‰¤i<jā‰¤n   āˆ‘Ci  Cj

                                = n 2nCn + 2{22n-1 - (2n)!/2(n!)2}               [from part (i)]

                                = n 2nCn + 22n - 2nCn

                                = (n-1) 2nCn + 22n                                 

(Hence, proved)

(iii)    Let āˆ‘0ā‰¤i<jā‰¤n   āˆ‘Ci  Cj

        replace i by (n - i) and j by (n - j), we have

                P = āˆ‘0ā‰¤i<jā‰¤n   āˆ‘(2n-i0j) Cn-i  Cn-j

                =  āˆ‘0ā‰¤i<jā‰¤n   āˆ‘(2n-(i+j)) Ci Cj       [Ā·.Ā· nCn = nCn-r]

                = 2n āˆ‘0ā‰¤i<jā‰¤n  āˆ‘ Ci Cj - P

        .Ā·.     āˆ‘0ā‰¤i<jā‰¤n   āˆ‘(i+j) Ci Cj = n[22n-1 - (2n)!/2(n!)2]                     

(Hence, proved)  

 Register for online classroom programmes targeting IIT JEE 2010 and 2011. You can also participate in the online tests conducted by askIITians and also give answers in AQAD (A Question A Day) to get a number of benefits in the online live classroom courses. Visit askIITians.com to read online Study material for IIT JEE and JEE Main /Advanced (known as AIEEE till 2012) preparation absolutely free.

To read more, Buy study materials of Binomial Theorem comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

Ask a Doubt

Get your questions answered by the expert for free

Enter text here...