Find the coefficient of the independent term of x in expansion of (3x - (2/x2))15.
Solution:
The general term of (3x - (2/x2))15 is written, as Tr+1 = 15Cr (3x)15-r (-2/x2)r. It is independent of x if,
15 - r - 2r = 0 => r = 5
.Ā·. T6 = 15C5(3)10(-2)5 = - 16C5 310 25.
Example 2:
If the coefficient of (2r + 4)th and (r - 2)th terms in the expansion of (1+x)18 are equal then find the value of r.
Solution:
The general term of (1 + x)n is Tr+1 = Crxr
Hence coefficient of (2r + 4)th term will be
T2r+4 = T2r+3+1 = 18C2r+3
and coefficient or (r - 2)th term will be
Tr-2 = Tr-3+1 = 18Cr-3.
=> 18C2r+3 = 18Cr-3.
=> (2r + 3) + (r-3) = 18 (Ā·.Ā· nCr = nCK => r = k or r + k = n)
.Ā·. r = 6
Example 3:
If a1, a2, a3 and a4 are the coefficients of any four consecutive terms in the expansion of (1+x)n then prove that:
a1/(a1+a2) + a2/(a3+a4) = 2a2/(a2+a3)
Solution:
As a1, a2, a3 and a4 are coefficients of consecutive terms, then
Let a1 = nCr
a2 = nCr+1
a3 = nCr+2 and
a4 = nCr+3
Now a1/(a1+a2) = nCr/(nCr+nCr+1) = 1/(1+((n-r)/(r+1))) = (r+1)/(n+1)
Similarly, a2/(a2+a3) = (r+3)/(n+1)
Now a3/(a3+a4) + a1/(a1+a2) = (2r+4)/(n+1)
= 2(r+1)/(n+1) = 2a2/(a2+a3) (Hence, proved)
Example 4:
Find out which one is larger 9950 + 10050 or 10150.
Solution:
Let's try to find out 10150 - 9950 in terms of remaining term i.e.
10150 - 9950 = (100+1)50 - (100 - 1)50
= (C0.10050 + C110049 + C2.10048 +......)
= (C010050 - C110049 + C210048 -......)
= 2[C1.10049 + C310047 +.........]
= 2[50.10049 + C310047 +.........]
= 10050 + 2[C310047 +............]
> 10050
=> 10150 > 9950 + 10050
Example 5:
Find the value of the greatest term in the expansion of ā3(1+(1/ā3))20.
Solution:
Let Tr+1 be the greatest term, then Tr < Tr+1 > Tr+2
Consider : Tr+1 > Tr
=> 20Cr (1/ā3)r > 20Cr-1(1/ā3)r-1
=> ((20)!/(20-r)!r!) (1/(ā3)r) > ((20)!/(21-r)!(r-1)!) (1/(ā3)r-1)
=> r < 21/(ā3+1)
=> r < 7.686 ......... (i)
Similarly, considering Tr+1 > Tr+2
=> r > 6.69 .......... (ii)
From (i) and (ii), we get
r = 7
Hence greatest term = T8 = 25840/9
Example 6:
Find the coefficient of x50 in the expansion of (1+x)1000 + 2x(1+x)999 + 3x2 (1+x)998 +...+ 1001x1000.
Solution:
Let S = (1 + x)1000 + 2x(1+x)999 +...+ 1000x999 (1+x) + 1001 x1000
This is an Arithmetic Geometric Series with r = x/(1+x) and d = 1.
Now (x/(1+x)) S = x(1 + x)999 + 2x2 (1 + x)998 +...+ 1000x1000 + 1000x1001/(1+x)
Subtracting we get,
(1 - (x/(x+1))) S =(1+x)1000 + x(1+x)999 +...+ x1000 - 1001x1000/(1+x)
or S = (1+x)1001 + x(1+x)1000 + x2(1+x)999 +...+ x1000 (1+x)-1001x1001
This is G.P. and sum is
S = (1+x)1002 - x1002 - 1002x1001
So the coeff. of x50 is = 1002C50
Example 7:
Show that nCk (sin kx) cos (n-k)x = 2n-1 sin(nx)
Solution:
We have nCk sin kx cos (n-k)x
=1/2 nCk [sin (k x + nx - kx) + sin (kx - nx + kx)]
=1/2 nCk sin n x + 1/2 nCk sin (2kx - nx)
= 1/2 sin n x nCk 1/2 [nC0 sin (-nx) + nC1 sin (2-n)x +...
...+ nCn-1 sin (n-2)x + nCn sin nx]
= 2n-1 sin nx + 0 (as terms in bracket, which are equidistant, from end and beginning will cancel each other).
(Hence, proved)
Example 8:
If (15+6ā6)2n+1 = P, then prove that P(1 - F) = 92n+1 (where F is the fractional part of P).
Solution:
We can write
P = (15+6ā6)2n+1 = I + F (Where I is integral and F is the fractional part of P)
Let F' = (15+6ā6)2n+1
Note: 6ā6 = 14.69
=> 0 < 156ā6 < 1
=> 0 < (15+6ā6)2n+1 < 1
=> 0 < F' < 1
Now, I + F = C0 (15)2n+1 + C1(15)2n 6ā6 + C2 (15)2n (6ā6 )2 +...
F' = C0 (15)2n+1 - C1(15)2n 6ā6 + C2(15)2n-1 (6ā6 )2 +...
I + F + F' = 2[C0 (15)2n+1 + C2 (15)2n-1 (6ā6 )2 +...]
Term on R.H.S. is an even integer.
=> I + F + F' = Even integer
=> F + F' = Integer
But, 0 < F < 1 and (F is fraction part)
0 < F' < 1
=> 0 < F + F' < 2
Hence F + F' = 1
F' = (1-f)
.Ā·. P(1-F) = (15 + 6ā6 )2n+1 (15-6ā6 )2n+1
= (9)2n+1 (Hence, proved)
Example 9:
Using ā«01(tx+a-x)n dx,prove that ā«01xk (1-x)(n-k) dx=[ nCk (n+1)](-1)
Solution:
The given integral can easily be evaluated, as follows:
I = ā«01(tx+a-x)n dx
= ā«01((t-1)x+1)n dx
= [((t-1)x+1)(n+1)/((n+1)(t-1))]01
=(t(n+1)-1)/(n+1)(t-1)=1/(1+n) [1 + t + t2 +...+ tk +...+ tn] ...... (i)
Also, I = ā«01(tx+(1-x))n dx
=ā«01 nCk (1-x)(n-K) tk xk dx ...... (ii)
Comparing the coefficient of tk from (i) and (ii), we get,
ā«01 nCk. xk (1-x)n-k dx=1/(n+1)
=> ā«01xk (1-x)n-k dx = 1/( nCk (n+1))
(Hence, proved)
Example 10:
Prove that (-3)r-1 3nC2r-1= where k = 3n/2 and n is an even positive integer.
Solution:
Since n is even integer, let n = 2m,
k = 3n/2 = 6m/2 =3m
The summation becomes,
S =
Now, (1+x)6m = 6mC0 + 6mC1 x + 6mC2 x2 +...
...+ 6mC6m-1 x6m-1 + 6mC6m x6m ...... (i)
(1-x)6m = 6mC0 + 6mC1 (-x) + 6mC2 (-x)2 +...
...+ 6mC6m-1 (-x)6m-1 + 6mC6m (-x)6m ...... (ii)
=> (1+x)6m - (1-x)6m = 2[6mC1x + 6mC3x2 +...+ 6mC6m-1x6m-2]
((1+x)6m - (1-x)6m)/2x = 6mC1 + 6mC3 x2 +......+ 6mC6m-1 x6m - 2
Let x2 = y
=>((1 + āy)6m-(1-āy)6m)/2āy=6mC1+6mC3y + 6mC3 y+......6mC6m-1 y3m-1
With y = -3, RHS becomes = S.
LHS =
(Hence, proved)
Example 11:
If k and n are two positive integers and
Sk = 1k + 2k +.........+ nk
Then show that
m+1C1S1 + m+1C2S2 +......+ m+1CmSm = (1+n)m+1 - (1+n)
Solution:
We have,
(1 + p)m+1 = m+1C0 + m+1C1 p + m+1C2 p2 + m+1Cm+1 pm+1
Putting p = 1, 2, 3, ........., n
=>2m+1 - 1 = m+1C0 + m+1C1(1) + m+1C2(1)2 +...+ m+1Cm(1)m
3m+1 - 2m+1 = m+1C0 + m+1C1(2) + m+1C2(2)2 +...+ m+1Cm(2)m
4m+1 - 3m+1 = m+1C0 + m+1C1(3) + m+1C2(3)2 +...+ m+1Cm(3)m
(1+n)m+1-nm+1 = m+1C0(n) + m+1C2 Ī£n + m+1C2 Ī£(n)2 +...+ m+1Cm ā(n)m.
Adding all these terms, we get
(1+n)m+1 -1 = m+1C0(n) + m+1C1S1 + m+1C2S2 +...+ m+1CmSm
=>m+1C1S1 + m+1C2S2 +...+ m+1CmSm = (1+n)m+1 - (1+n)
(Hence, proved)
Example 12:
Given that Sn = 1 + q + q2 +....+ qn
and Pn = 1 + ((q+1)/2) + ((q+1)/2)2 + ....+((q+1)/2)n
show that n+1C1 + n+1C2S1 + n+1C2S2 +...+ n+1Cn+1 Sn = 2n pn.
Solution:
Both Sn and Pn are geometric series
Sn = 1 + q + q2 +......qn = 1-qn-1/1-q ...... (i)
Pn = 1 + ((q+1)/2) + ((q+1)/2)2 +.....+((q+1)/2)n
=(1-((q+1)/2)n+1)/(1-(q+1)/2)=1/2n(2n+1-(q+1)n+1)/(1-q) ...... (ii)
n+1Cr+1Sr = n+1Cr+1 ((1-qr+1)/(1-q)) = n+1Cr+1 ((1/(1-q)) - (qr+1/(1-q)))
= (1/(1-q))n+1Cr+1 - (1/(1-q)) n+1Cr+1 qr+1
=>n+1Cr+1 Sr=(1/(1-q))n+1Cr+1- (1/(1-q))n+1Cr+1 qr+1
=> ān+1Cr+1Sr = 2npn (Hence, proved)
Example 13:
Show that if Cr is the coefficient of xr in (1+x)n, then
Cr3 = Coefficient of xn yn in the expression of ((1+x)(1+y)(x+y))n
Solution:
(1+x)n = nC0 + nC1 x + nC2 x2 +...+ nCn xn ...... (1)
(1+y)n = nC0 + nC1 y + nC2 y2 +...+ nCn yn ...... (2)
(x+y)n = nC0 xn + nC1 xn-1 y + nC2 xn-2 +...+ nCn yn ....... (3)
writing (1+y)n as (y+1)n and expanding it in decreasing powers of y.
(y+1)n = nC0yn + nC1yn-1 + nC2yn-2 +...+ nCn ....... (4)
multiplying (1), (3) and (4) we get,
(1+x)n (y+1)n (x+y)n
= (nC0 + nC1x + nC2x2 +...+ nCnxn) Ć (nC0yn + nC1yn-1 +...+ nCn)
Ć (nC0xn + nC1xn-1y +...+ nCnyn)
Now, coefficient of xnyn in RHS = nC03 + nC13 + nC23 +... nCn3
= coefficient of xnyn in LHS
= coefficient of xnyn in {(1+x)(1+y)(x+y)}n
(Hence, proved)
Example 14:
If (1+x)n = C0 + C1x + C2x2 +...+ Cnxn (nĪµN)
Then show that k3 [Ck/Ck-1] = 1/12 (n)(n+1)2(n+2)
Solution:
Cr/Cr-1 = (n!/(n-r)!r!) (((r-1)!(n-r+1)!)/n!) = (((n+1)/r)-1)
r3(Cr/Cr-1) = ((n+1)/r-1) r3 = (n+1)r2 - r3
=
(n+1)n(n+1)(2n+1)/6-(n2 (n+1)2)/4
= n(n+1)/12 [4n2 + 6n + 2 - 3n2 - 3n] = n(n+1)(n2+3n+2)/12
n(n+1)(n+1)(n+2)/12=(n(n+1)2 (n+2))/12
(Hence, proved)
Example 15:
If (1+x)n = C0 + C1 x + C2 x2 +...+ Cn xn then show that
(i) ā0ā¤i<jā¤n Ci Cj = 22n-1 -
(ii) ā0ā¤i<jā¤n (Ci + Cj)2 = (n - 1) 2nCn + 22n
(iii) ā0ā¤i<jā¤n āCi Cj = n (22n-1 - 1/2 2nCn)
Solution:
(i) We have
(C0 + C1 + C2 +...+ Cn)2 = C02 + C12 +...+ Cn2 + 2 ā0ā¤i<jā¤n āCi Cj
we get, (2n)2 = 2nCn + 2 ā0ā¤i<jā¤n āCi Cj
therefore ā0ā¤i<jā¤n āCi Cj = 22n-1 - (2n)!/2(n!)2
(Hence, proved)
(ii) ā0ā¤i<jā¤n āCi Cj n(C02 + C12 + C22 +...+ Cn2) + 2ā0ā¤i<jā¤n āCi Cj
= n 2nCn + 2{22n-1 - (2n)!/2(n!)2} [from part (i)]
= n 2nCn + 22n - 2nCn
= (n-1) 2nCn + 22n
(Hence, proved)
(iii) Let ā0ā¤i<jā¤n āCi Cj
replace i by (n - i) and j by (n - j), we have
P = ā0ā¤i<jā¤n ā(2n-i0j) Cn-i Cn-j
= ā0ā¤i<jā¤n ā(2n-(i+j)) Ci Cj [Ā·.Ā· nCn = nCn-r]
= 2n ā0ā¤i<jā¤n ā Ci Cj - P
.Ā·. ā0ā¤i<jā¤n ā(i+j) Ci Cj = n[22n-1 - (2n)!/2(n!)2]
(Hence, proved)
Register for online classroom programmes targeting IIT JEE 2010 and 2011. You can also participate in the online tests conducted by askIITians and also give answers in AQAD (A Question A Day) to get a number of benefits in the online live classroom courses. Visit askIITians.com to read online Study material for IIT JEE and JEE Main /Advanced (known as AIEEE till 2012) preparation absolutely free.
To read more, Buy study materials of Binomial Theorem comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.
Get your questions answered by the expert for free