Table of Content |
|
To understand the concept of subsets, first we need to recall, what is sets? A set is a collection of different things having some common property, not necessarily. The objects of a set are called the elements of a set. These elements have their own identity separately but collectively they make a set.
We have a set of 9 polygons here, but we can make a set of regular polygons only also. Or we can make a set of triangles also. So, we must be able to differentiate all elements from each other.
A set A is said to be a subset of set B, if all the elements of set A are the element of set B also. Or we can say that a Set A is the subset of set B if x belongs to A means X belongs to B also.
Here all the elements of set A are there in set B. So, A is a subset of B. We can also say that B contains A, so B is the superset of A.
Example
A = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
B = {Monday, Tuesday, Wednesday}
Here, all the elements of B are present in A, so B is the subset of A.
To represent the subset we use a symbol “⊆” it means “is a subset of”.
As in the above example B⊆A i.e. B is the subset of A.
For the superset we use the symbol “ ⊇” it means “ is a superset of”.
A ⊇B i.e. A is the superset of B or A contains B.
If X is not a subset of Y then we write it with Symbol “⊈” it means “ is not a subset of”.
We write it as X⊈Y i.e. X is not a subset of Y.
Symbolically we can write the definiton of subset as follows-
A⊆B if x A x B
We can read it as “A is the subset of B if x belongs to A implies that x also belengs to B.
If X is the subset of Y but Y is not the subset of X, then X is the proper subset of Y .Or If all the elements of X are present in Y but all the elements of Y are not there in X. Then X is the proper subset of Y.And Y is the proper superset of X.
We denote it with the symbol “⊂” it means “is a proper subset of”.
And “⊃” it means “is a proper superset of”.
Example
A = {1, 2, 3, 4, 5, 6}
B = {4, 5, 6}
It shows that all the elements of B are the elements of A also but all the elements of A are not there in B. So B⊂A i.e. B is the proper subset of A.
A = {1,9,11}
B = {1,4,8,9,11}
C = {1,4,8,9,11}
D = {2,3}
This shows that:
A⊂B i.e. A is the proper subset of B as All the elements of A are the elements of B but all the elements of B are not the elements of A.
B⊃A i.e. B is the proper superset of A as B contains A but A does not contain B.
B⊆C i.e. B is the subset of C but not the proper subset of C as B = C.
C⊇B i.e. C is the superset of B as C contains B.
D⊈B i.e. D is not the subset of B as all the elements of B and D are different.
If X is the subset of Y, then all the elements of X are there in Y but it is not necessary that all the elements Y are also there in X . But if It happens than Y is also the subset of X. It means that X and Y are same sets i.e. equal sets.Two sets are said to be equal sets if there elements and the number of elements are exactly same.
Symbolically,
X⊆Y and Y⊆X ⇔ X=Y
“⇔” it represents the two way implication, it means “if and only if”.
We read it as X is the subset of Y and Y is the subset of X if and only if X is equal to Y.
As in the above picture it shows that X and Y have same elements , so they are equal sets . It simply means that both are same sets. As X =Y, X⊆X and Y⊆Y.
So every set is a subset of itself.
Empty Set is a set with no element in it .It is a set with zero cardinality i.e. the number of element is zero (0). The symbol of empty set is { } or ∅ (phi).It is also called Null or Void Set.
If all the elements of a set X are present in set Y, then X will be a subset of Y, so if all the elements of the empty set are present in any set then it will be a subset of that particular set.
Example
X= {1, 3, 5, 7}
Here, Set with 0 elements in this set is 1 i.e.-∅ (empty set)
As empty set is a set which have no element in it, so it can be easily present in any set.
This shows that empty set is the subset of every set.
∅⊆X
Empty set is a subset of every set and every set is a subset of itself. So, Empty set is also a subset of itself.
But the empty set is not the proper subset of itself. The empty set is a proper subset of all sets except ∅.
∅ ⊂X≠ ∅
We read it as; empty set is a proper subset of X which is not equal to empty set.
Here in the above picture, it shows that A is the subset of B as all the elements of A are there in B and B is the subset of C as all the elements of B are there in C.
It represents that if,
A⊂B and B⊂A ⇒ A⊂C
We will read it as If A is the subset of B and B is the subset of C it implies that A is the subset of C also.
Example
X = {0,1,2,3,5,6}
Y = {1,2,3,4,5}
Here,
Z⊂Y and Y⊂X ⇒ Z⊂X
It shows that Z is the subset of Y and Y is the subset of X so Z is also the subset of X.
V = {1, 2, 3, 4, 5}
Here set V has 5 elements. Let’s see the possible subsets of this set:
∅ | {1} | {1,2}, {1,3} | {1,2,3}, {1,2,4} | {1,2,3,4,5} |
{2} | {1,4}, {1,5} | {1,2,5}, {1,3,4} | ||
{3} | {2,3}, {2, 4} | {1,3,5}, {1,4,5} | ||
{4} | {2,5}, {3, 4} | {2,3,4}, {2,3,5} | ||
{5} | {3,5}, {4,5} | {2,4,5}, {3,4,5} |
Here we have listed all the subsets of set V as it has 5 elements only but it is not possible to list all the subsets of a set having big number of elements.So we need some formula to calculate the number of subet.
If we will try to list the number of subsets , we can see that:
Number of Subsets | |
Set with 1 element | 2 |
Set with 2 elements | 4 |
Set with 3 elements | 8 |
Set with 4 elements | 16 |
Set wth 5 elements | 32 |
This shows that every time as the number of element of a set is increasing the number of subsets is getting doubled .so the formula for the number of subsets will be 2n if the number of elements of a set is n.
As in the above example we have seen that all the subsets are the proper subsets of Set V except {1, 2, 3, 4, 5} itself. So it is true for every set that the formula for the number of proper subsets will be 2n-1, for the given number of n elements.
And sometimes people use the online algebra calculator to calculate the number of subsets.
Example
Calculate the number of subsets and proper subsets of Set M={1,3,5,7}.
Solution
Here, n(M)=4
Number of subsets =2n
=24
Number of proper subsets =2n-1
=24-1
=16-1
=15
N represents the set of all natural numbers: N = { 1, 2, 3, . . .}
W represents the set of all whole numbers, i.e. natural numbers including zero also: W = {0, 1, 2, 3,…}
Z represents the set of all integers (whether positive, negative or zero), i.e. whole numbers including all negative integers also: Z = {..., −2, −1, 0, 1, 2, ...}.
Q , represents the set of all rational numbers, i.e. the set of all proper and improper fractions: Q = {x/y : x, y ∈ Z, y ≠ 0}
An irrational number cannot be expressed as a fraction p/q for any integers and any integers p and q. There is no standard notation for the set of irrational numbers, but the notations where the minus sign, or bar indicates the set complement of the rational numbers .
R represents the set of all real numbers. This set includes all rational numbers, together with all irrational numbers (that is, numbers that cannot be rewritten as fractions, such as √2, as well as transcendental numbers such as π, e and numbers that cannot be defined).
Real numbers is a set of all possible numbers in the universe.So all the other sets of numbers are the subsets of real numbers.
More Readings