Solved Examples of Definite Integral

Solved Examples

30.The value of  ∫1000(√x)dx ( where {x} is the fractional part of x) is

(A) 50                                                         

(B) 1

(C) 100

(D) none of these

Solution:       Given integral = âˆ«1000 (√x–[√x])dx               ( by the def. of {x} )

2215_equation.JPG

                        Hence (D) is the correct answer.                          

31.                   The value of  âˆ«10   (|sin 2 p x| dx is equal to

                        (A) 0                                                          (B)  2/Ï€

                        (C) 1/Ï€                                                      (D) 2

Solution:       Since |sin 2 Ï€ x | is periodic with period 1/2,

                        I =  âˆ«10  |sin 2 Ï€ x| dx= 2 âˆ«10  sin 2 Ï€ x dx

                        = 2 [–cos2Ï€x/2Ï€]1/20 = 2/Ï€ 

                        Hence (B) is the correct answer.

32.                   Let f : R —> R, f(x) = 304_equation.JPG, where [.] denotes greatest integer function, then âˆ«4–2 f(z)dx is equal to

                        (A) 5/2                                                            (B) 3/2

                        (C) 5                                                               (D) 3

Solution:       x – [x] = {x}

                        x – [x +1] ={x} – 1

                        âˆ«4–2 f(x)dx = 6.1/2 (1.1) = 3

                        Hence (D) is the correct answer.

 

 1078_greatest integer function.JPG

  1. 33.                   158_integer.JPG is equal to

                        (A) 0                                                               (B) 2

                        (C) e                                                               (D) none of these 

Solution:       I = 158_integer.JPG

                         property âˆ«a–a f(x)dx = 0 (f (–x) = –f (x), odd function)

                        Hence I = 0

                        Hence (A) is the correct answer.

34.                 The value of âˆ«10–10 3x/3[x] dx is equal to (where [.] denotes greatest integer function) :

                      (A) 20                                                   (B) 40 / In3

                      (C) 20 / In 3                                          (D) none of these

2397_integer.JPG

                      Hence (B) is the correct answer. 

35.                 Values of âˆ«+1/2–1/2 cos x log 1+x/1–x dx is :

                      (A) 1/2                                                  (B) – 1/2

                      (C) 0                                                     (D) none of these 

Solution:     I = âˆ«+1/2–1/2 cos x log 1+x/1–x dx

                      f (x) = cos x ln 1+x/1–x

                      f (- x) = cox (- x) ln 1+x/1–x

                      = - cos (x) ln (1+x/1–x) = – f (x)

                      f (x) is an odd function 

                      hence I = 0

                      Hence (C) is the correct answer. 

36.                 f (x) = min (tan x, cot x), 0 < x < , then âˆ«Ï€/20 f(x)dx is equal to :

                      (A) ln2                                                  (B) ln âˆš2

                      (C) 2 ln âˆš2                                           (D) none of these

 

Solution:     f (x) = min (tan x, cot x),        

                      âˆˆ [0, Ï€/2]

                      f (x) = tan x,    0 < x <  Ï€/4

                             = cot x,    Ï€/4  < x < Ï€/4

                      Hence

1493_integer.JPG

                       2 ln âˆš2  = ln 2.

                      Hence (A) is the correct answer.

 698_tan x, cot x.JPG

 

 

37.                 The value of 1370_integer.JPG  is equal to :

                      (A)  Ï€/2                                                 (B) 2Ï€

                      (C) Ï€                                                     (D) Ï€/p

Solution:     I = 2145_integer.JPG

                      Hence (B) is the correct answer.

38.                 The value of 481_integer.JPG is equal to :

                      (A) 2 – 1/e                                  (B) 2 + 1/e

                      (C) e+1/e                                   (D) none of these

Solution:     I = 481_integer.JPG  = |x–e–x|10 (1 - e-1) - (0 - 1) = 2 - e-1

                      Hence (A) is the correct answer.                                       

39.                 1868_integer.JPG has the value is :

                      (A) 0                                                      (B) 1/2           

                      (C) 1                                                     (D) 1/4

1125_integer.JPG

 Hence (A) is the correct answer.

40.                 1316_integer.JPG is :

                      (A) 0                                                      (B) 1

                      (C) Ï€/2                                                  (D) Ï€/4

586_integer.JPG

                      Hence (D) is the correct answer. 

41.                 The value of 1076_integer.JPG depends on :

                      (A) p                                                      (B) q

                      (C) r                                                      (D) p and q

Solution:     I = 507_integer.JPG

                      = q 35_integer.JPG (Since sin3x and sin5 x are odd functions)

            Hence (B) is the correct answer.

To read more, Buy study materials of Definite integral comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

Ask a Doubt

Get your questions answered by the expert for free

Enter text here...