Solved Examples of Definite Integral Part I

11:     The area bounded by the curve y = x (3 – x)2 , the x – axis and the ordinates of the maximum and minimum points of the curve is

(A)       2 sq. units                      

(B)       4 sq. units

(C)       3 sq. units                      

(D)       8 sq. units

Solution:             y = x (3 – x)2

                                    After solving , we get x =1 and x = 3         are       points of maximum and     minimum respectively.

                              Now the shaded region is the required region

                              2247_equation.JPG

 

1322_maximum and minimum points.JPG

12:                        The area enclosed by the curve |x + 1| + |y + 1| = 2 is

(A)       3 sq. units                       (B)       4 sq. units

(C)       5 sq. units                       (D)       8 sq. units

Solution:             Shift the origin at the point (-1, -1)

                                    So |x + 1| + |y + 1| = 2 

                                    becomes |x| + | y | = 2

                                    Hence required area is

                                    = 4 × 1/2 × 2 × 2 = 8sq. units

1370_origin at the point.JPG

13:                             The area common to the curves y = x3 and y =  √x is

(A)       2                                        (B)       4

(C)       8                                        (D)       None of these

125_sol.JPG

 

 

1120_curves.JPG

14:       The area of the region consisting of points (x, y) satisfying |x ± y | < 2 and x2 + y2 > 2 is

            (A)             8 – 2π sq. units

            (B)             4 – 2π sq. units

            (C)             1 – 2π sq. units

            (D)             2π sq. units

                                  177_consisting of points.JPG

Solution:            Shaded region is the required one.

                          Required Area   =  4 × 1/2 × 2 × 2 – π.2 = 8 – 2π sq. unit

15:                   ∫xo [sint] dt where x ∈ and [2nπ, (4n+1)]π, n ∈ N and [.] denotes the greatest integer function is equal to.

                        (A)       -nπ                                         (B)       -(n +1)π

                        (C)       -2nπ                                      (D)       -2(n +1)π

39_equation.JPG

16:                  If f(π) = 2 and ∫πo [f(x) + f"(x)] sin x dx = 5 then f(0) is equal to, (it given that f(x) is continuous in [0, π])

                        (A)       7                      (B)       3                      (C)       5                      (D)       1

2268_equation.JPG

                    => f(π) + f(0) = 5 (given)

                    => f(0) = 5 – f(π) = 5 – 2 = 3

17:                Let f(x) is a continuous function for all real values of x and satisfies 193_equation.JPG + a then value of ‘a’ is equal to

                        (A)  –1/24                   (B)      17/168                (C)      1/7        (D)      None of these

86_equation.JPG

                        Diff. both sides of (i) w. r. t. x we get;

                        f(x) = 0 – x2 f(x) + 2x15 + 2x5

1968_equation.JPG

18:                  2127_equation.JPG. Then complete set of values of x for which f(x) <lnx is

                        (A)       (0, 1]                                       (B)       [1, ∞)

                        (C)       (0, ∞)                                      (D)       None of these

Solution:       994_equation.JPG

                        Let g(x) = f(x) - ln(x). x ∈ R +

                        => g ’(x) = f ’(x) – 1/x = ex – 1 / x > 0 ∀ x ∈ R+

                        => g'(x) is increasing for ∀ x ∈ R+

                        g(1) = f(1) - ln1 = 0 – 0 = 0

                        => g(x) > 0 ∀ x > 1 and g(x) > 0      ∀ x ∈ (0, 1]

                        => ln x > f(x) ∀ x ∈ (0, 1]

19:                  1522_equation.JPG, where [.] denotes the greatest integer function, and x ∈ R+, is equal to

                        (A)       1/In2 ([x] + 2[x]–1)            (B)       1/In2 ([x] + 2[x])

                        (C)       1/In2 ([x] – 2[x])               (D)       1/In2 ([x] + 2[x]+1)

Solution:       Let n < x < n + 1 where n ∈ I, I > 0

1287_equation.JPG              

20:                  Let I1 = 1992_integers.JPG then

                        (A)      I1 > I2 > I3 > I4                         (B)      I2 > I3 > I4 > I1

                        (C)      I3 > I4 > I1 > I2                         (D)      I2 > I1 > I3 > I4

212_equation.JPG

To read more, Buy study materials of Definite integral comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.