21:       Area bounded by y = g(x), x-axis and the lines x = -2, x = 3, where

                          1629_equation.JPG

                       and f(x) = x2 -  , is equal to

                        (A)  113/24 sq.units                       (B)         111/24 sq.units

                        (C)  117/24 sq.units                       (D)         121/24 sq,units

2113_bounded area.JPG

22:                  Area of the region which consists of all the points satisfying the conditions |x–y| + |x+y| < 8 and xy > 2, is equal to

                        (A)      4(7 – ln8)sq. units               (B)      4(9 – ln8)sq. units  

                        (C)      2(7 – ln8)sq. units               (D)      2(9 – ln8)sq. units

Solution:       The expression |x–y| + |x+y| < 8, represents the interior region of the square formed by the lines x = Â± 4, y = Â± 4 and xy > 2. represents the region lying inside the hyperbola xy =2

                                                    672_Required area.JPG

                        Required area

                       302_equation.JPG

                      = 4(7–3 In2) sq.units

                     = 4(7 – In8) sq.units

23:                  Area bounded by the parabola (y - 2)2 = x – 1, the tangent to it at the point P (2, 3) and the x-axis is equal to

                        (A)      9 sq. units                             (B)      6 sq. units

                        (C)      3 sq. units                             (D)      None of these

Solution:       (y - 2)2 = (x - 1) => 2(y - 2).  = 1

                                 1912_parabola.JPG

                        => dy/dx = 1/2(y–2)

                        Thus equation of tangent at P(2, 3) is,

                        (y – 3) = 1/2 (x–2) i.e., x = 2y – 4

                        Required area 243_equation.JPG

                        = ((y–2)3/3 – y2 + 5y)30 = 9 sq. units

24:                  Two lines draw through the point P(4, 0) divide the area bounded by the curves y = √2 Ï€x/4 and x – axis, between the linea x = 2, and x = 4, in to three equal parts. Sum of the slopes of the drawn lines is equal to

                        (A) â€“2 2/Ï€                                     (B)      â€“√2/Ï€

                        (C) â€“√2/Ï€                                     (D)      â€“4√2/Ï€

Solution:       Area bounded by y = âˆš2 .sin Ï€x/4 and x-axis between the lines x = 2 and x = 4,

                                    446_equation.JPG

                      Let the drawn lines are L1: y – m1(x - 4) = 0 and L2: y – m2(x - 4) = 0, meeting the line x = 2 at the points A and B respectively Clearly A = (2, - 2m1); B= (2, -2m2)

 2491_equation.JPG

 25:                  If A = 2020_equation.JPG is equal to

                        (A)   1/Ï€+2 – A                               (B)      1/2 + 1/Ï€+2 – A

                        (C)   1/2 – 1/Ï€+2 – A                     (D)      1/2 + 1/Ï€+2 + A 

1960_equation.JPG

26.                   The value of the integral 1803_equation.JPG is

                        (A) 1                                                                         (B) Ï€/12

                        (C) Ï€/6                                                                     (D) none of these  

Solution:       Using the property 1290_equation.JPG f (a + b – x) dx, the given integral 

1337_equation.JPG

                        Hence (B) is the correct answer.

27.                   If I =  155_equation.JPG dx then

                        (A) 0                                                               (B) 2  

                        (C)  Ï€/2                                                         (D) 2 – Ï€/2

2314_equation.JPG

                        Hence (D) is the correct answer.

28.                   If I = 1509_integers.JPG , then

                        (A) 0 < I < 1                                                   (B) I > Ï€/2

                        (C) I < âˆš2Ï€                                                     (D) I > 2 Ï€

Solution:       Since x âˆˆ [0, Ï€/2]  => 1 < 1 + sin3 x < 2

1484_equation.JPG

                        Hence (C) is the correct answer.

29.                   If f (a + b –x) = f (x) then âˆ«ba x f (x) dx is equal to

                        (A) a–b/2 âˆ«ba f(x) dx                                    (B) (a+b/2) âˆ«ba f(x) d x           

                        (C) 0                                                              (D) none of these

Solution:        I = âˆ«ba x f (x) dx = âˆ«ba (a+b-x) f (a +b-x) dx

                        = (a + b) âˆ«ba  f(a +b –x) - âˆ«ba x f (a + b –x) dx 

                        = ( a + b) âˆ«ba f (x) dx - âˆ«ba x f (x) d x

                        Hence I = (a+b/2) âˆ«ba f(x) dx.

                        Hence (B) is the correct answer.

To read more, Buy study materials of Definite integral comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

Ask a Doubt

Get your questions answered by the expert for free

Enter text here...