General Theorems on Differentiation

 

General Theorems on Differentiation

  • d/dx (c) = 0

  • d/dx [a f(x)+b g(x) ] = af'(x) + b g'(x)

  • d/dx [f(x)g(x) ] = f' (x)g(x) + f(x) g'(x)

  • d/dx [f(x)/g(x)] = (g(x) f'(x) - f(x) g'(x))/[g(x) ]2

  • d/dx [f(x)g(x) ] = f(x)g(x) [g(x)/f(x) f'(x) + g' (x)lnf(x)]


Chain Rule

If y = f(u) and u = g(x), then dy/dx = dy/dx.du/dx = f'g(x) g'(x)

e.g. Let y = [f(x)]n. We put u = f(x). so that y = un.

Therefore, using chain rule, we get

dy/dx = dy/dx.du/dx = nu(n-1) [f'(x)](n-1) f' (x)
 

Illustration:

Differentiate

y = sec-1 by ab- nitio

sec y=x                              ...... (i)

Let Δx be increment in x and Δy be the corresponding increment in y

x + Δx = sec (y+Δy)                ...... (ii)

(Equation (ii)-Equation (i)) gives

Δx = sec (y + Δy)- sec y

Δx/Δy=(sec (y+?y)- secy)/(? y)

Applying limits Δ y-->0

lim?y→0 ?x/?y=lim?y→0 ( sec (y+?y)-secy)/(? y) (0/0 form)

dx/dy=lim?y→0 (2 sin?y/2 sin(y+?y/2) )/(?y.cosy cos(y+?y) )

=lim?y→0 (sin?y/s/(?y/2)) × lim?y→0 sin(y+?y/2)/cosy cos(y+?y)

--> (dx )/(dy ) = siny/(cos2 y)

--> (dx )/(dy ) = 1/(dx/dy) =(cos2 y)/siny

= 1/tany secy =1/(x √(x2-1)) (wrong)

sec y = x                   (Given)

1+ tan2y = sec2 y

tan y = ± √(sec2 y-1)

= ± √(x2 -1)

Sec-1 x = y ? (0, Π)

--> (dx )/(dy ) = 1/(|x| √(x2-1))

To read more, Buy study materials of Methods of Differentiation comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

Ask a Doubt

Get your questions answered by the expert for free

Enter text here...