Solved Examples on Indefinite Integral

Example 1: If ∫ xex cos x dx = f(x) dx + c, then f(x) is equal to

∫ xe(1 + i)x / 1+i – ∫ e(1+i)x / 1 + i dx = xe(1+i)x / 1+ i – e(1+i)x / (1+i)2

e(1 + i)x[x(1 + i –1 / (1+i)2)]

ex (cos x + i sin x) [(x–1) + ix / 1 + i – 1]

ex/–2 [icos x – sin x][(x – 1) + ix]

I = ex/2 [(1 – x) sin x – x cos x] + c.

 

Example 2: Let x2 +1 ≠ nπ, n ∈ N, then

\int x\sqrt{\frac{2 sin (x^{2}+1) - sin(2x^{2}+1)}{2 sin (x^{2}+1) + sin(2x^{2}+1)}} dx is

(a) ln |1/2 sec (x2 + 1) | + c

(b) ln | sec { ½ (x2 + 1) | + c

(c) 1/2 ln | sec (x2 + 1) | + c

(d) ln | sec (x2 + 1) | + c

Solution:  Let

I = \int x\sqrt{\frac{2 sin (x^{2}+1) - sin(2x^{2}+1)}{2 sin (x^{2}+1) + sin(2x^{2}+1)}}

Put x2 + 1= t

x dx = ½ dt

Then I = ½ ∫ √ (2 sin t – sin 2t)/(2 sin t + sin 2t) dt

           = ½ ∫ √ (1 - cos t)/(1 + cos t) dt

           = ½ ∫ tan (t/2) dt

           = ½ .2. ln | sec (t/2)| + c

           = ln | sec {(x2+1)/2} + c

           = ln | sec {1/2 (x2 + 1)} + c

 

Example 3: Let f(x) be a function such that f(0) = f’(0) = 0, f”(x)  = sec4x + 4, then the function is 

(a) ln |(sin x)| + 1/3 tan3x + x

(b) 2/3 ln |(sec x)| + 1/6 tan2x + 2x2

(c) ln |cos x| + 1/6 cos2x – x2/5

(d) none of these

Solution: Since f”(x)  = sec4x + 4

So, f”(x)  = (1 + tan2x) sec2x + 4

Therefore, f’(x) = tan x + tan3x/3 + 4x + c

Since, f’(0) = 0

So, 0 = c

Then, f’(x) = tan x + + tan3x/3 + 4x

                  = tan x + 1/3 tan x (sec2x – 1) + 4x

f’(x) = 2/3 tan x + 1/3 tan x sec2x + 4x

So, f(x) = 2/3 ln | sec x| + tan2 x/6 + 2x2 + d

But, f(0) = 0

So, d = 0

Then, f(x) = 2/3 ln | sec x | + 1/6 tan 2x + 2x2.

Example 4: ∫ x-2/3 (1 + x1/2)-5/3 dx is equal to

(a) 3(1 + x-1/2)-1/3 + c

(b) 3(1 + x-1/2)-2/3 + c

(c) 3(1 + x1/2)-2/3 + c

(a) none of these

More than one

Example 5:  more than one

If \int \frac{(4e^{x}+6e^{-x})}{()9e^{x}-4e^{-x})}dx =Ax + B log (9e^{2x}-4)+C, then

(a) A = 3/2

(a) B = 35/36

(a) C is indefinite

(a) A + B = -19/36

Example 6: Fill in the blanks: ∫ √ x + √(x2 + 1) dx is equal to

Example 7: True/false: The antiderivative of f(x) = ln(ln x) + (ln x)-2 whose graph passes through (e, e) is x ln(ln x) – x(ln x)-1

Solution:

Download IIT JEE Solved Examples of Indefinite Integral


To read more, Buy study materials of Indefinite integral comprising study notes, revision notes, video lectures, previous year solved questions etc. Also browse for more study materials on Mathematics here.

Ask a Doubt

Get your questions answered by the expert for free

Enter text here...