Find the value
x3 + x − 3x2 − 3
Taking x common in x3 + x
= x(x2 + 1) − 3x2 − 3
Taking - 3 common in − 3x2 − 3
= x(x2 + 1) − 3(x2 + 1)
Now, we take (x2 + 1) common
= (x2 + 1) (x - 3)
∴ x3 + x − 3y2 − 3 = (x2 + 1)(x - 3)
Find the value
a(a + b)3 − 3a2b(a + b)
Taking (a + b) common in the two terms
= (a + b){a(a + b)² - 3a²b}
Now, using (a + b)2= a2 + b2 + 2ab
= (a + b){a(a2 + b2 + 2ab) − 3a2b}
= (a + b){a3 + ab2 + 2a2b − 3a2b}
= (a + b){a3 + ab2 − a2b}
= (a + b)p{a2 + b2 − ab}
= p(a + b)(a2 + b2 − ab)
∴ a(a + b)3 − 3a2b(a + b)
= a(a + b)(a2 + b2 − ab)
Find the value
x(x3 − y3) + 3xy(x − y)
Elaborating x3 − y3 using the identity
x3 − y3 = (x − y)(x2 + xy + y2)
= x(x − y)(x2 + xy + y2) + 3xy(x − y)
Taking common x(x - y) in both the terms
= x(x − y)(x2 + xy + y2 + 3y)
∴ x(x3 − y3) + 3xy(x − y)
= x(x − y)(x2 + xy + y2 + 3y)
Find the value
a2x2 + (ax2 + 1)x + a
We multiply x(ax2 + 1) = ax3 + x
= a2x2 + ax3 + x + a
Taking common ax2 in (a2x2 + ax3) and 1 in (x + a)
= ax2(a + x) + 1(x + a)
=ax2(a + x) + 1(a + x)
Taking (a + x) common in both the terms
= (a + x)(ax2 + 1)
∴ a2x2 + (ax2 + 1)x + a = (a + x)(ax2 + 1)
Find the value
x2 + y − xy − x
On rearranging
x2 − xy − x + y
Taking x common in the (x2 − xy) and -1 in(-x + y)
= x(x - y) - 1 (x - y)
Taking (x - y) common in the terms
= (x - y)(x - 1)
∴ x2 + y − xy − x = (x - y)(x - 1)
Find the value
x3 − 2x2b + 3xy2 − 6y3
Taking x2 common in (x3 − 2x2y) and +3y2 common in (3xy2 − 6y3)
= x2(x − 2y) + 3y2(x − 2y)
Taking (x - 2y) common in the terms
= (x − 2y)(x2 + 3y2)
∴ x3 − 2x2y + 3xy2 − 6y3 = (x − 2y)(x2 + 3y2)
Find the value
6ab − b2 + 12ac − 2bc
Taking b common in (6ab − b2) and 2c in (12ac - 2bc)
= b(6a - b) + 2c (6a - b)
Taking (6a - b) common in the terms
= (6a - b)(b + 2c)
∴ 6ab − b2 + 12ac − 2bc = (6a - b)(b + 2c)
Find the value
[x2 + 1/x2] − 4[x + 1/x] + 6
= x2 + 1/x2 − 4x − 4/x + 4 + 2
= x2 + 1/x2 + 4 + 2 − 4x − 4x
= (x2) + (1/x)2 + (−2)2 + 2 × x × 1/x + 2 × 1/x × (−2) + 2(−2)x
Using identity
x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
We get,
= [x + 1/x + (−2)]2
= [x + 1/x − 2]2
= [x + 1/x − 2][x + 1/x − 2]
∴ [x2 + 1/x2] − 4[x + 1/x] + 6 = [x + 1/x − 2][x + 1/x − 2]
Find the value
x(x - 2)(x - 4) + 4x - 8
= x(x - 2)(x - 4) + 4(x - 2)
Taking (x - 2) common in both the terms
=(x - 2){x(x - 4) + 4}
=(x - 2){x2 − 4x + 4}
Now splitting the middle term of x2 − 4x + 4
= (x - 2){x2 − 2x − 2x + 4}
= (x - 2){x( x - 2) -2(x - 2)}
= (x - 2){(x - 2)(x - 2)}
= (x - 2)(x - 2)(x - 2)
= (x − 2)3
∴ x(x - 2)(x - 4) + 4x - 8 = (x − 2)3
Find the value
(x + 2)(x2 + 25) − 10x2 − 20x
(x + 2)(x2 + 25) - 10x (x + 2)
Taking (x + 2) common in both the terms
= (x + 2)(x2 + 25 − 10x)
= (x + 2)(x2 − 10x + 25)
Splitting the middle term of (x2 − 10x + 25)
= (x + 2)(x2 − 5x − 5x + 25)
= (x + 2){x(x - 5)-5 (x - 5)}
= (x + 2)(x - 5)(x - 5)
∴ (x + 2)(x2 + 25) − 10x2 - 20x = (x + 2)(x - 5)(x - 5)
Find the value
2a2+2√6ab +3b2
Using the identity (p + q)2 = p2 + q2 + 2pq
Find the value
(a − b + c)2 + (b − c + a)2 + 2(a − b + c) × (b − c + a)
Let (a - b + c) = x and (b - c + a) = y
= x2 + y2 + 2xy
Using the identity (a + b)2 = a2 + b2 + 2ab
= (x + y)2
Now, substituting x and y
(a - b + c + b − c + a)2
Cancelling -b, +b & + c, -c
= (2a)2
= 4a2
∴ (a − b + c)2 + (b − c + a)2 + 2(a − b + c) × (b − c + a) = 4a2
Find the value
a2 + b2 + 2(ab + bc + ca)
= a2 + b2 + 2ab + 2bc + 2ca
Using the identity (p + q)2 = p2 + q2 + 2pq
We get,
= (a + b)2 + 2bc + 2ca
= (a + b)2 + 2c(b + a)
Or (a + b)2 + 2c(a + b)
Taking (a + b) common
= (a + b)(a + b + 2c)
∴ a2 + b2 + 2(ab + bc + ca) = (a + b)(a + b + 2c)
Find the value
4(x − y)2 − 12(x − y)(x + y) + 9(x + y)2
Let(x - y) = x,(x + y) = y
= 4x2 − 12xy + 9y2
Splitting the middle term - 12 = – 6 - 6 also 4 × 9 = −6 × − 6
= 4x2 − 6xy − 6xy + 9y2
= 2x(2x - 3y) -3y(2x - 3y)
= (2x - 3y)(2x - 3y)
= (2x − 3y)2
Substituting x = x - y & y = x + y
= [2(x − y) − 3(x + y)]2 = [2x - 2y - 3x - 3y]2
= (2x - 3x - 2y - 3y)²
= [−x − 5y]2
= [(−1)(x + 5y)]2
= (x + 5y)2 [? (-1)2 = 1]
∴ 4(x − y)2 − 12(x − y)(x + y) + 9(x + y)2 = (x + 5y)2
Find the value
a2 − b2 + 2bc − c2
a2 − (b2 − 2bc + c2)
Using the identity (a − b)2 = a2 + b2 − 2ab
= a2 − (b − c)2
Using the identity a2 − b2 = (a + b)(a − b)
= (a + b - c)(a - (b - c))
= (a + b - c)(a - b + c)
∴ a2 − b2 + 2bc − c2 = (a + b - c)(a - b + c)
Find the value
a2 + 2ab + b2 − c2
Using the identity (p + q)2 = p2 + q2 + 2pq
= (a + b)2 − c2
Using the identity p2 − q2 = (p + q)(p − q)
= (a + b + c)(a + b - c)
∴ a2 + 2ab + b2 − c2 = (a + b + c)(a + b - c)
Find the value
a2 + 2ab + b2 − c2
Using the identity (p + q)2 = p2 + q2 + 2pq
= (a + b)2 − c2
Using the identity p2 − q2 = (p + q)(p − q)
= (a + b + c)(a + b - c)
∴ a2 + 2ab + b2 − c2 = (a + b + c)(a + b - c)
Find the value
xy9 − yx9
= xy(y8 − x8)
= xy((y4)2 − (x4)2)
Using the identity p2 − q2 = (p + q)(p - q)
= xy(y4 + x4)(y4 − x4)
= xy(y4 + x4)((y2)2 − (x2)2)
Using the identity p2 − q2 = (p + q)(p - q)
= xy(y4 + x4)(y2 + x2)(y2 − x2)
= xy(y4 + x4)(y2 + x2)(y + x)(y − x)
= xy(x4 + y4)(x2 + y2)(x + y)(−1)(x − y)
∴ (y − x) = −1(x − y)
= −xy(x4 + y4)(x2 + y2)(x + y)(x − y)
∴ xy9 − yx9 = −xy(x4 + y4)(x2 + y2)(x + y)(x − y)
Find the value
x4 + x2y2 + y4
Adding x2y2 and subtracting x2y2 to the given equation
= x4 + x2y2 + y4 + x2y2 − x2y2
= x4 + 2x2y2 + y4 − x2y2
= (x2)2 + 2 × x2 × y2 + (y2)2 − (xy)2
Using the identity (p + q)2 = p2 + q2 + 2pq
= (x2 + y2)2 − (xy)2
Using the identity p2 − q2 = (p + q)(p - q)
= (x2 + y2 + xy)(x2 + y2 − xy)
∴ x4 + x2y2 + y4 = (x2 + y2 + xy)(x2 + y2 − xy)
Find the value
x2 − y2 − 4xz + 4z2
On rearranging the terms
= x2 − 4xz + 4z2 − y2
= (x)2 − 2 × x × 2z + (2z)2 − y2
Using the identity x2 − 2xy + y2 = (x − y)2
= (x − 2z)2 − y2
Using the identity p2 − q2 = (p + q)(p - q)
= (x − 2z + y)(x − 2z − y)
∴ x2 − y2 − 4xz + 4z2 = (x − 2z + y)(x − 2z − y)
Find the value
Splitting the middle term,
Find the value
Splitting the middle term,
Find the value
Splitting the middle term,
Find the value
Splitting the middle term,
Find the value
Splitting the middle term,
Find the value
Splitting the middle term,
= 2x2 − x2 − x3 + 1/12
[∴ −5/6 = −1/2 − 1/3 also −1/2 × −1/3 = 2 × 1/12]
= x(2x − 1/2) − 1/6(2x − 1/2)
= (2x − 1/2)(x − 1/6)
∴ 2x2 − 56x + 1/12 = (2x − 1/2)(x − 1/6)
Find the value
Splitting the middle term,
= x2 + x/7 + x/5 + 1/35
= x(x + 1/7) + 1/5(x + 1/7)
= (x + 1/7)(x + 1/5)
Find the value
21x2 − 2x + 1/21
Using the identity (x - y)2 = x2 + y2 - 2xy
Find the value
Splitting the middle term,
Find the value
Splitting the middle term,
Find the value
9(2a − b)2 − 4(2a − b) − 13
Let 2a - b = x
= 9x2 − 4x − 13
Splitting the middle term,
= 9x2 − 13x + 9x − 13
= x(9x − 13) + 1(9x − 13)
= (9x − 13)(x + 1)
Substituting x = 2a - b
= [9(2a − b) − 13](2a − b + 1)
= (18a − 9b − 13)(2a − b + 1)
∴ 9(2a − b)2 − 4(2a − b) − 13 = (18a − 9b − 13)(2a − b + 1)
Find the value
7(x − 2y)2 − 25(x − 2y) + 12
Let x - 2y = P
= 7P2 − 25P + 12
Splitting the middle term,
= 7P2 − 21P − 4P + 12
= 7P(P − 3) − 4(P − 3)
= (P − 3)(7P − 4)
Substituting P = x - 2y
= (x − 2y − 3)(7(x − 2y) − 4)
= (x − 2y − 3)(7x − 14y − 4)
∴ 7(x − 2y)2 − 25(x − 2y) + 12 = (x − 2y − 3)(7x − 14y − 4)
Find the value
2(x + y)2 − 9(x + y) − 5
Let x + y = z
= 2z2 − 9z − 5
Splitting the middle term,
= 2z2 − 10z + z − 5
= 2z(z − 5) + 1(z − 5)
= (z − 5)(2z + 1)
Substituting z = x + y
= (x + y − 5)(2(x + y) + 1)
= (x + y − 5)(2x + 2y + 1)
∴ 2(x + y)2 − 9(x + y) − 5 = (x + y − 5)(2x + 2y + 1)
Give the possible expression for the length & breadth of the rectangle having 35y2 − 13y − 12 as its area.
Area is given as 35y2 − 13y − 12
Splitting the middle term,
Area = 35y2 + 218y − 15y − 12
= 7y(5y + 4) − 3(5y + 4)
= (5y + 4)(7y − 3)
We also know that area of rectangle = length × breadth
∴ Possible length = (5y + 4) and breadth = (7y − 3)
Or possible length = (7y − 3) and breadth = (5y + 4)
What are the possible expression for the cuboid having volume 3x2 − 12x.
Volume = 3x2 − 12x
= 3x(x − 4)
= 3×x(x − 4)
Also volume = Length × Breadth × Height
∴ Possible expression for dimensions of cuboid are = 3, x, (x − 4)