Find the value
p3 + 27
= p3 + 33
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= (p + 3)(p² - 3p - 9)
∴ p3 + 27 = (p + 3)(p² - 3p - 9)
Find the value
y3 + 125
= y3 + 53
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= (y + 5)(y2 − 5y + 52)
= (y + 5)(y2 − 5y + 25)
∴ y3 + 125 = (y + 5)(y2 − 5y + 25)
Find the value
1 − 27a3
= (1)3 − (3a)3
= (1 − 3a)(12 + 1 × 3a + (3a)2)
∴ [a3 − b3 = (a − b)(a2 + ab + b2)]
= (1 − 3a)(12 + 3a + 9a2)
∴ 1 − 27a3 = (1 − 3a)(12 + 3a + 9a2)
Find the value
8x3y3 + 27a3
= (2xy)3 + (3a)3
= (2xy + 3a)((2xy)2 − 2xy × 3a + (3a)2)
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= (2xy + 3a)(4x2y2 − 6xya + 9a2)
∴ 8x3y3 + 27a3 = (2xy + 3a)(4x2y2 − 6xya + 9a2)
Find the value
64a3 − b3
= (4a)3 − b3
= (4a − b)((4a)2 + 4a × b + b2)
∴ [a3 − b3 = (a − b)(a2 + ab + b2)]
= (4a − b)(16a2 + 4ab + b2)
∴ 64a3 − b3 = (4a − b)(16a2 + 4ab + b2)
Find the value
x3/216 − 8y3
= (x/6 − 2y)((x/6)2 + x/6 × 2y + (2y)2)
∴ [x3 − y3 = (x − y)(x2 + xy + y2)]
= (x/6 − 2y)(x2/36 + xy/3 + 4y2)
∴ x3/216 − 8y3 = (x/6 − 2y)(x2/36 + xy/3 + 4y2)
Find the value
10x4y − 10xy4
= 10xy(x3 − y3)
= 10xy(x − y)(x2 + xy + y2)
∴ [x3 − y3 = (x − y)(x2 + xy + y2)]
∴ 10x4y − 10xy4 = 10xy(x − y)(x2 + xy + y2)
Find the value
54x6y + 2x3y4
= 2x3y(27x3 + y3)
= 2x3y((3x)3 + y3)
= 2x3y(3x + y)((3x)2 − 3x × y + y2)
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= 2x3y(3x + y)(9x2 − 3xy + y2)
∴ 54x6y + 2x3y4 = 2x3y(3x + y)(9x2 − 3xy + y2)
Find the value
32a3 + 108b3
= 4(8a3 + 27b3)
= 4((2a)3 + (3b)3)
= 4[(2a + 3b)((2a)2 − 2a × 3b + (3b)2
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= 4(2a + 3b)(4a2 − 6ab + 9b2)
∴ 32a3 + 108b3 = 4(2a + 3b)(4a2 − 6ab + 9b2)
Find the value
(a − 2b)3 − 512b3
= (a − 2b)3 − (8b)3
= (a − 2b − 8b)((a − 2b)2 + (a − 2b)8b + (8b)2)
∴ [a3 − b3 = (a − b)(a2 + ab + b2)]
= (a − 10b)(a2 + 4b2 − 4ab + 8ab − 16b2 + 64b2)
= (a − 10b)(a2 + 52b2 + 4ab)
∴ (a − 2b)3 − 512b3 = (a − 10b)(a2 + 52b2 + 4ab)
Find the value
(a + b)3 − 8(a − b)3
= (a + b)3 − [2(a − b)]3
= (a + b)3 − [2a − 2b]3
= (a + b − (2a − 2b))((a + b)2 + (a + b)(2a − 2b) + (2a − 2b)2)
∴ [a3 − b3 = (a − b)(a2 + ab + b2)]
= (a + b − 2a + 2b)(a2 + b2 + 2ab + (a + b)(2a − 2b) + (2a − 2b)2)
= (a + b − 2a + 2b)(a2 + b2 + 2ab + 2a2 − 2ab + 2ab − 2b2 + (2a − 2b)2)
= (3b − a)(3a2 + 2ab − b2 + (2a − 2b)2)
= (3b − a)(3a2 + 2ab − b2 + 4a2 + 4b2 − 8ab)
= (3b − a)(3a2 + 4a2 − b2 + 4b2 − 8ab + 2ab)
= (3b − a)(7a2 +3b2 − 6ab)
∴ (a + b)3 − 8(a − b)3 = (3b − a)(7a2 + 3b2 − 6ab)
Find the value
(x + 2)3 + (x − 2)3
= (x + 2 + x − 2)((x + 2)2 − (x + 2)(x − 2) + (x − 2)2)
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= 2x(x2 + 4x + 4 − (x + 2)(x − 2) + x2 − 4x + 4)
= 2x(2x2 + 8 − (x2 − 22))
[∴ (a + b)(a − b) = a2 − b2]
= 2x(2x2 + 8 − x2 + 4)
= 2x(x2 + 12)
∴ (x + 2)3 + (x − 2)3 = 2x(x2 + 12)
Find the value
8x2y3 − x5
= x2((2y)3 − x3)
= x2(2y − x)((2y)2 + 2y × x + x2)
[∴ x3 − y3 = (x − y)(x2 + xy + y2)]
= x2(2y − x)(4y2 + 2xy + x2)
∴ 8x2y3 − x5 = x2(2y − x)(4y2 + 2xy + x2)
Find the value
1029 - 3x3
= 3(343 − x3)
= 3((7)3 − x3)
= 3(7 − x)(72 + 7x + x2)
[∴ a3 − b3 = (a − b)(a2 + ab + b2)]
= 3(7 − x)(49 + 7x + x2)
∴ 1029 - 3x3 = 3(7 − x)(49 + 7x + x2)
Find the value
x6 + y6
= (x2)3 + (y2)3
= (x2 + y2)((x2)2 − x2y2 + (y2)2)
= (x2 + y2)(x4 − x2y2 + y4)
[∴ a3 + b3 = (a + b)(a2 − ab + b2)]
∴ x6 + y6 = (x2 + y2)(x4 − x2y2 + y4)
Find the value
x3y3 + 1
= (xy)3 + 13
= (xy + 1)((xy)2 + xy + 12)
[∴ x3 + y3 = (x + y)(x2 − xy + y2)]
= (xy + 1)(x2y2 − xy + 1)
∴ x3y3 + 1 = (xy + 1)(x2y2 − xy + 1)
Find the value
x4y4 − xy
= xy(x3y3 − 1)
= xy((xy)3 − 13)
= xy(xy − 1)((xy)2 + xy × 1 + 12)
∴ [x3 − y3 = (x − y)(x2 + xy + y2)]
= xy(xy − 1)(x2y2 + xy + 1)
∴ x4y4 − xy = xy(xy − 1)(x2y2 + xy + 1)
Find the value
a12 + b12
= (a4)3 + (b4)3
= (a4 + b4)((a4)2 − a4 × b4 + (b4)2)
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= (a4 + b4)(a8 − a4b4 + b8)
∴ a12 + b12 = (a4 + b4)(a8 − a4b4 + b8)
Find the value
x3 + 6x2 + 12x + 16
= x3 + 6x2 + 12x + 8 + 8
= x3 + 3 × x2 × 2 + 3 × x × 22 + 23 + 8
= (x + 2)3 + 8
[∴ a3 + 3a2b + 3ab2 + b3 = (a + b)3]
= (x + 2)3 + 23
= (x + 2 + 2)((x + 2)2 − 2(x + 2) + 22)
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= (x + 2 + 2)(x2 + 4 + 4x − 2x − 4 + 4)
[∴ (a + b)2 = a2 + b2 + 2ab]
= (x + 4)(x2 + 4 + 2x)
∴ x3 + 6x2 + 12x + 16 = (x + 4)(x2 + 4 + 2x)
Find the value
a3 + b3 + a + b
= (a3 + b3) + 1(a + b)
= (a + b)(a2 − ab + b2) + 1(a + b)
[∴ a3 + b3 = (a + b)(a2 − ab + b2)]
= (a + b)(a2 − ab + b2 + 1)
∴ a3 + b3 + a + b = (a + b)(a2 − ab + b2 + 1)
Find the value
a3 − 1/a3 − 2a + 2a
= (a3 − 1/a3) − 2(a − 1/a)
= (a3 − (1/a)3) − 2(a − 1/a)
= (a − 1/a)(a2 + a × 1/a + (1/a)2) − 2(a − 1/a)
[∴ a3 − b3 = (a − b)(a2 + ab + b2)]
= (a − 1/a)(a2 + 1 + 1/a2) − 2(a − 1/a)
= (a − 1/a)(a2 + 1 + 1/a2 − 2)
= (a − 1/a)(a2 + 1/a2 − 1)
∴ a3 − 1/a3 − 2a + 2a = (a − 1/a)(a2 + 1/a2 − 1)
Find the value
a3 + 3a2b + 3ab2 + b3 − 8
= (a + b)3 − 8
[∴ a3 + 3a2b + 3ab2 + b3 = (a + b)3]
= (a + b)3 − 23
= (a + b − 2)((a + b)2 + (a + b) × 2 + 22)
= (a + b - 2)(a² + 2ab + b² + 2a + 2b + 4)
∴ a3 + 3a2b + 3ab2 + b3 − 8 = (a + b - 2)(a² + 2ab + b² + 2a + 2b + 4)
Find the value
8a3 − b3 − 4ax + 2bx
= (2a)3 − b3 − 2x(2a − b)
= (2a − b)((2a)2 + 2a × b + b2) − 2x(2a − b)
[∴ a3 − b3 = (a − b)(a2 + ab + b2)]
= (2a − b)(4a2 + 2ab + b2 − 2x)
∴ 8a3 − b3 − 4ax + 2bx = (2a − b)(4a2 + 2ab + b2 − 2x)
Find the value
∴ [a3 + b3 = (a + b)(a2 − ab + b2)]
= (173 + 127)
= 300
[∴ a3 − b3 = (a − b)(a2 + ab + b2)]
= (1.2 − 0.2)
= 1.0
[∴ a3 − b3 = (a − b)(a2 + ab + b2)]
= (155 - 55)
= 100